{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Budynas ch15

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 15 15-1 Given: Uncrowned, through-hardened 300 Brinell core and case, Grade 1, N C = 10 9 rev of pinion at R = 0 . 999, N P = 20 teeth, N G = 60 teeth, Q v = 6, P d = 6 teeth/in, shaft angle 90°, n p = 900 rev/min, J P = 0 . 249 and J G = 0 . 216 (Fig. 15-7), F = 1 . 25 in, S F = S H = 1, K o = 1. Mesh d P = 20 / 6 = 3 . 333 in d G = 60 / 6 = 10 . 000 in Eq. (15-7): v t = π (3 . 333)(900 / 12) = 785 . 3 ft/min Eq. (15-6): B = 0 . 25(12 6) 2 / 3 = 0 . 8255 A = 50 + 56(1 0 . 8255) = 59 . 77 Eq. (15-5): K v = 59 . 77 + 785 . 3 59 . 77 0 . 8255 = 1 . 374 Eq. (15-8): v t , max = [59 . 77 + (6 3)] 2 = 3940 ft/min Since 785 . 3 < 3904, K v = 1 . 374 is valid. The size factor for bending is: Eq. (15-10): K s = 0 . 4867 + 0 . 2132 / 6 = 0 . 5222 For one gear straddle-mounted, the load-distribution factor is: Eq. (15-11): K m = 1 . 10 + 0 . 0036(1 . 25) 2 = 1 . 106 Eq. (15-15): ( K L ) P = 1 . 6831(10 9 ) 0 . 0323 = 0 . 862 ( K L ) G = 1 . 6831(10 9 / 3) 0 . 0323 = 0 . 893 Eq. (15-14): ( C L ) P = 3 . 4822(10 9 ) 0 . 0602 = 1 ( C L ) G = 3 . 4822(10 9 / 3) 0 . 0602 = 1 . 069 Eq. (15-19): K R = 0 . 50 0 . 25 log(1 0 . 999) = 1 . 25 (or Table 15-3) C R = K R = 1 . 25 = 1 . 118 Bending Fig. 15-13: 0 . 99 S t = s at = 44(300) + 2100 = 15 300 psi Eq. (15-4): ( σ all ) P = s w t = s at K L S F K T K R = 15 300(0 . 862) 1(1)(1 . 25) = 10 551 psi Eq. (15-3): W t P = ( σ all ) P F K x J P P d K o K v K s K m = 10 551(1 . 25)(1)(0 . 249) 6(1)(1 . 374)(0 . 5222)(1 . 106) = 690 lbf H 1 = 690(785 . 3) 33 000 = 16 . 4 hp Eq. (15-4): ( σ all ) G = 15 300(0 . 893) 1(1)(1 . 25) = 10 930 psi
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
380 Solutions Manual Instructor’s Solution Manual to Accompany Mechanical Engineering Design W t G = 10 930(1 . 25)(1)(0 . 216) 6(1)(1 . 374)(0 . 5222)(1 . 106) = 620 lbf H 2 = 620(785 . 3) 33 000 = 14 . 8 hp Ans. The gear controls the bending rating. 15-2 Refer to Prob. 15-1 for the gearset specifications. Wear Fig. 15-12: s ac = 341(300) + 23 620 = 125 920 psi For the pinion, C H = 1 . From Prob. 15-1, C R = 1 . 118. Thus, from Eq. (15-2): ( σ c , all ) P = s ac ( C L ) P C H S H K T C R ( σ c , all ) P = 125 920(1)(1) 1(1)(1 . 118) = 112 630 psi For the gear, from Eq. (15-16), B 1 = 0 . 008 98(300 / 300) 0 . 008 29 = 0 . 000 69 C H = 1 + 0 . 000 69(3 1) = 1 . 001 38 And Prob. 15-1, ( C L ) G = 1 . 0685 . Equation (15-2) thus gives ( σ c , all ) G = s ac ( C L ) G C H S H K T C R ( σ c , all ) G = 125 920(1 . 0685)(1 . 001 38) 1(1)(1 . 118) = 120 511 psi For steel: C p = 2290 psi Eq. (15-9): C s = 0 . 125(1 . 25) + 0 . 4375 = 0 . 593 75 Fig. 15-6: I = 0 . 083 Eq. (15-12): C xc = 2 Eq. (15-1): W t P = ( σ c , all ) P C p 2 Fd P I K o K v K m C s C xc = 112 630 2290 2 1 . 25(3 . 333)(0 . 083) 1(1 . 374)(1 . 106)(0 . 5937)(2) = 464 lbf H 3 = 464(785 . 3) 33 000 = 11 . 0 hp W t G = 120 511 2290 2 1 . 25(3 . 333)(0 . 083) 1(1 . 374)(1 . 106)(0 . 593 75)(2) = 531 lbf H 4 = 531(785 . 3) 33 000 = 12 . 6 hp
Background image of page 2
Chapter 15 381 The pinion controls wear: H = 11 . 0 hp Ans. The power rating of the mesh, considering the power ratings found in Prob. 15-1, is H = min(16 . 4, 14 . 8, 11 . 0, 12 . 6) = 11 . 0 hp Ans . 15-3 AGMA 2003-B97 does not fully address cast iron gears, however, approximate compar- isons can be useful. This problem is similar to Prob. 15-1, but not identical. We will orga- nize the method. A follow-up could consist of completing Probs. 15-1 and 15-2 with identical pinions, and cast iron gears. Given: Uncrowned, straight teeth, P d = 6 teeth/in, N P = 30 teeth, N G = 60 teeth, ASTM 30 cast iron, material Grade 1, shaft angle 90°, F = 1 . 25, n P = 900 rev/min, φ n = 20 , one gear straddle-mounted, K o = 1, J P = 0 . 268, J G = 0 . 228, S F = 2, S H = 2 . Mesh d P = 30 / 6 = 5 . 000 in d G = 60 / 6 = 10 . 000 in v t = π (5)(900 / 12) = 1178 ft/min Set N L = 10 7 cycles for the pinion. For R = 0 . 99, Table 15-7: s at = 4500 psi Table 15-5: s ac = 50 000 psi Eq. (15-4): s w t = s at K L S F K T K R = 4500(1) 2(1)(1) = 2250 psi The velocity factor K v represents stress augmentation due to mislocation of tooth profiles along the pitch surface and the resulting “falling” of teeth into engagement. Equation (5-67)
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}