Chapter3

# Chapter3 - 95 CHAPTER 3 Section 3.1 1 S FFF SFF FSF FFS FSS...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 95 CHAPTER 3 Section 3.1 1. S: FFF SFF FSF FFS FSS SFS SSF SSS X: 0 1 1 1 2 2 2 3 2. X = 1 if a randomly selected book is non-fiction and X = 0 otherwise X = 1 if a randomly selected executive is a female and X = 0 otherwise X = 1 if a randomly selected driver has automobile insurance and X = 0 otherwise 3. M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3, 4, or 5; W = 1 if the sum of the two resulting numbers is even and W = 0 otherwise, a Bernoulli random variable. 4. In my perusal of a zip code directory, I found no 00000, nor did I find any zip codes with four zeros, a fact which was not obvious. Thus possible X values are 2, 3, 4, 5 (and not 0 or 1). X = 5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322. 5. No. In the experiment in which a coin is tossed repeatedly until a H results, let Y = 1 if the experiment terminates with at most 5 tosses and Y = 0 otherwise. The sample space is infinite, yet Y has only two possible values. 6. Possible X values are1, 2, 3, 4, … (all positive integers) Outcome: RL AL RAARL RRRRL AARRL X: 2 2 5 5 5 Chapter 3: Discrete Random Variables and Probability Distributions 96 7. a. Possible values are 0, 1, 2, …, 12; discrete b. With N = # on the list, values are 0, 1, 2, … , N; discrete c. Possible values are 1, 2, 3, 4, … ; discrete d. { x: 0< x < ∞ } if we assume that a rattlesnake can be arbitrarily short or long; not discrete e. With c = amount earned per book sold, possible values are 0, c, 2c, 3c, … , 10,000c; discrete f. { y: 0 < y < 14} since 0 is the smallest possible pH and 14 is the largest possible pH; not discrete g. With m and M denoting the minimum and maximum possible tension, respectively, possible values are { x: m < x < M }; not discrete h. Possible values are 3, 6, 9, 12, 15, … -- i.e. 3(1), 3(2), 3(3), 3(4), …giving a first element, etc,; discrete 8. Y = 3 : SSS; Y = 4: FSSS; Y = 5: FFSSS, SFSSS; Y = 6: SSFSSS, SFFSSS, FSFSSS, FFFSSS; Y = 7: SSFFS, SFSFSSS, SFFFSSS, FSSFSSS, FSFFSSS, FFSFSSS, FFFFSSS 9. a. Returns to 0 can occur only after an even number of tosses; possible S values are 2, 4, 6, 8, …(i.e. 2(1), 2(2), 2(3), 2(4),…) an infinite sequence, so x is discrete. b. Now a return to 0 is possible after any number of tosses greater than 1, so possible values are 2, 3, 4, 5, … (1+1,1+2, 1+3, 1+4, …, an infinite sequence) and X is discrete 10. a. T = total number of pumps in use at both stations. Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 b. X: -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 c. U: 0, 1, 2, 3, 4, 5, 6 d. Z: 0, 1, 2 Chapter 3: Discrete Random Variables and Probability Distributions 97 Section 3.2 11....
View Full Document

## This note was uploaded on 03/30/2008 for the course STAT 211 taught by Professor Parzen during the Spring '07 term at Texas A&M.

### Page1 / 34

Chapter3 - 95 CHAPTER 3 Section 3.1 1 S FFF SFF FSF FFS FSS...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online