141Bmid1csols - 1 MATH 141B Midterm#1 Solutions Date Instructor Dr M.Fabbri 1(This is#15 Ver B Compute the integral first evaluate later Let u = 4

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 MATH 141B Midterm#1 Solutions Date: Feb 19, 2008 Instructor: Dr. M.Fabbri 1. (This is #15 Ver B ) Compute the integral first, evaluate later. Let u = 4 x and dv = e 2 x dx . Then du = 4 dx and v = 1 2 e 2 x . Hence, integraldisplay 4 xe 2 x dx = integraldisplay u dv = uv − integraldisplay v du = 2 xe 2 x − 2 integraldisplay e 2 x dx = 2 xe 2 x − e 2 x = (2 x − 1) e 2 x . Evaluating, gives integraldisplay 1 4 xe 2 x dx = (2 x − 1) e 2 x bracketrightbig 1 = e 2 − ( − 1) = e 2 + 1 . Therefore, B) is the correct answer. 2. (This is #16 Ver B ) Compute the integral first, evaluate later. Let u = ln x and dv = 1 x dx . Then du = 1 x dx and v = ln x. Hence, integraldisplay ln x x dx = integraldisplay u dv = uv − integraldisplay v du = (ln x ) 2 − integraldisplay ln x x dx Notice that it is the same integral on both sides of the equation. Combining them, gives 2 integraldisplay ln x x dx = (ln x ) 2 . Dividing both sides by 2 leads to integraldisplay ln x x dx = 1 2 (ln x ) 2 . Finally, evalu- ating gives integraldisplay e 1 ln x x dx = 1 2 (ln x ) 2 bracketrightbig e 1 = 1 2 [(ln e ) 2 − (ln 1) 2 ] = 1 2 (1 − 0) = 1 2 . Therefore, C) is the correct answer. 3. (This is #1 Ver B ) If u = x 2 − x , then du = 2 x − 1 dx. Hence, integraldisplay 2 x − 1 x 2 − x dx = integraldisplay du u = ln | u | = ln | x 2 − x | Therefore, integraldisplay ∞ 2 2 x − 1 x 2 − x dx = lim b →∞ integraldisplay b 2 2 x − 1 x 2 − x dx = lim b →∞ ln | x 2 − x | bracketrightbig b 2 = lim b →∞ (ln | b 2 − b | − ln2) = + ∞ . Therefore, D) is the correct answer. 2 4. (This is #2 Ver B ) det A = vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle 1 1 − 1 2 3 − 5 − 3 − 5 9 vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle 1 1 2 3 − 3 − 5 = (9 + 25 + 18) − (27 + 15 + 10) = 52 − 52 = 0 ....
View Full Document

This note was uploaded on 03/30/2008 for the course MATH 141B taught by Professor Marcfabbri during the Spring '08 term at Pennsylvania State University, University Park.

Page1 / 5

141Bmid1csols - 1 MATH 141B Midterm#1 Solutions Date Instructor Dr M.Fabbri 1(This is#15 Ver B Compute the integral first evaluate later Let u = 4

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online