Calculus: Early Transcendentals, by Anton, 7th Edition,ch02

# Calculus - Early Transcendentals

This preview shows pages 1–6. Sign up to view the full content.

44 CHAPTER 2 Limits and Continuity EXERCISE SET 2.1 1. (a) 1 (b) 3 (c) does not exist (d) 1 (e) 1 (f) 3 2. (a) 2 (b) 0 (c) does not exist (d) 2 (e) 0 2 3. (a) 1 (b) 1 (c) 1 (d) 1 (e) −∞ + 4. (a) 3 (b) 3 (c) 3 (d) 3 (e) + + 5. (a) 0 (b) 0 (c) 0 (d) 3 (e) + + 6. (a) 2 (b) 2 (c) 2 (d) 3 (e) −∞ + 7. (a) −∞ (b) + (c) does not exist (d) undef (e) 2 0 8. (a) + (b) + (c) + (d) undef (e) 0 1 9. (a) −∞ (b) −∞ (c) −∞ (d) 1 (e) 1 2 10. (a) 1 (b) −∞ (c) does not exist (d) 2 (e) + + 11. (a) 0 (b) 0 (c) 0 (d) 0 (e) does not exist does not exist 12. (a) 3 (b) 3 (c) 3 (d) 3 (e) does not exist 0 13. for all x 0 6 = 4 14. for all x 0 6 = 6 , 3 19. (a) 2 1 . 5 1 . 1 1 . 01 1 . 001 0 0 . 5 0 . 9 0 . 99 0 . 999 0 . 1429 0 . 2105 0 . 3021 0 . 3300 0 . 3330 1 . 0000 0 . 5714 0 . 3690 0 . 3367 0 . 3337 1 0 02 The limit is 1 / 3.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Exercise Set 2.1 45 (b) 2 1 . 5 1 . 1 1 . 01 1 . 001 1 . 0001 0 . 4286 1 . 0526 6 . 344 66 . 33 666 . 3 6666 . 3 50 0 12 The limit is + . (c) 0 0 . 5 0 . 9 0 . 99 0 . 999 0 . 9999 1 1 . 7143 7 . 0111 67 . 001 667 . 0 6667 . 0 0 -50 01 The limit is −∞ . 20. (a) 0 . 25 0 . 1 0 . 001 0 . 0001 0 . 0001 0 . 001 0 . 1 0 . 25 0 . 5359 0 . 5132 0 . 5001 0 . 5000 0 . 5000 0 . 4999 0 . 4881 0 . 4721 0.6 0 -0.25 0.25 The limit is 1/2. (b) 0 . 25 0 . 1 0 . 001 0 . 0001 8 . 4721 20 . 488 2000 . 5 20001 100 0 0 0.25 The limit is + .
46 Chapter 2 (c) 0 . 25 0 . 1 0 . 001 0 . 0001 7 . 4641 19 . 487 1999 . 5 20000 0 -100 -0.25 0 The limit is −∞ . 21. (a) 0 . 25 0 . 1 0 . 001 0 . 0001 0 . 0001 0 . 001 0 . 1 0 . 25 2 . 7266 2 . 9552 3 . 0000 3 . 0000 3 . 0000 3 . 0000 2 . 9552 2 . 7266 3 2 -0.25 0.25 The limit is 3. (b) 0 0 . 5 0 . 9 0 . 99 0 . 999 1 . 5 1 . 1 1 . 01 1 . 001 1 1 . 7552 6 . 2161 54 . 87 541 . 1 0 . 1415 4 . 536 53 . 19 539 . 5 60 -60 -1.5 0 The limit does not exist. 22. (a) 0 0 . 5 0 . 9 0 . 99 0 . 999 1 . 5 1 . 1 1 . 01 1 . 001 1 . 5574 1 . 0926 1 . 0033 1 . 0000 1 . 0000 1 . 0926 1 . 0033 1 . 0000 1 . 0000 1.5 1 -1.5 0 The limit is 1.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Exercise Set 2.1 47 (b) 0 . 25 0 . 1 0 . 001 0 . 0001 0 . 0001 0 . 001 0 . 1 0 . 25 1 . 9794 2 . 4132 2 . 5000 2 . 5000 2 . 5000 2 . 5000 2 . 4132 1 . 9794 2.5 2 -0.25 0.25 The limit is 5/2. 23. The height of the ball at time t =0 . 25+∆ t is s (0 . t )= 16(0 . t ) 2 +29(0 . t )+6, so the distance traveled over the interval from t . 25 t to t . t is s (0 . t ) s (0 . 25 t 64(0 . 25)∆ t + 58∆ t . Thus the average velocity over the same interval is given by v ave =[ s (0 . t ) s (0 . 25 t )] / 2∆ t =( 64(0 . 25)∆ t + 58∆ t ) / 2∆ t = 21 ft/s, and this will also be the instantaneous velocity, since it happens to be independent of ∆ t . 24. The height of the ball at time t . 75+∆ t is s (0 . t 16(0 . t ) 2 . t so the distance traveled over the interval from t . 75 t to t . t is s (0 . t ) s (0 . 75 t 64(0 . 75)∆ t + 58∆ t . Thus the average velocity over the same interval is given by v ave s (0 . t ) s (0 . 75 t )] / 2∆ t 64(0 . 75)∆ t + 58∆ t ) / 2∆ t = 5 ft/s, and this will also be the instantaneous velocity, since it happens to be independent of ∆ t . 25. (a) 100 , 000 , 000 100 , 000 1000 100 10 10 100 1000 2 . 0000 2 . 0001 2 . 0050 2 . 0521 2 . 8333 1 . 6429 1 . 9519 1 . 9950 100 , 000 100 , 000 , 000 2 . 0000 2 . 0000 40 -40 -14 6 asymptote y =2as x →±∞ (b) 100 , 000 , 000 100 , 000 1000 100 10 10 100 1000 20 . 0855 20 . 0864 20 . 1763 21 . 0294 35 . 4013 13 . 7858 19 . 2186 19 . 9955 100 , 000 100 , 000 , 000 20 . 0846 20 . 0855 70 0 -160 160 asymptote y =20 . 086.
48 Chapter 2 (c) 100 , 000 , 000 100 , 000 1000 100 10 10 100 1000 100 , 000 100 , 000 , 000 100 , 000 , 001 100 , 000 1001 101 . 0 11 . 2 9 . 2 99 . 0 999 . 0 99 , 999 99 , 999 , 999 50 –50 -20 20 no horizontal asymptote 26. (a) 100 , 000 , 000 100 , 000 1000 100 10 10 100 1000 100 , 000 100 , 000 , 000 0 . 2000 0 . 2000 0 . 2000 0 . 2000 0 . 1976 0 . 1976 0 . 2000 0 . 2000 0 . 2000 0 . 2000 0.2 -1.2 -10 10 asymptote y =1 / 5as x →±∞ (b) 100 , 000 , 000 100 , 000 1000 100 10 10 100 0 . 0000 0 . 0000 0 . 0000 0 . 0000 0 . 0016 1668 . 0 2 . 09 × 10 18 1000 100 , 000 100 , 000 , 000 1 . 77 × 10 301 ? ?

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 01/24/2008.

### Page1 / 26

Calculus: Early Transcendentals, by Anton, 7th Edition,ch02...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online