5.03 Proving Trigonometric Equations - Assignment Name \u200b5.03 Proving Trigonometric Equations Verify each trigonometric equation by substituting

5.03 Proving Trigonometric Equations - Assignment Name...

This preview shows page 1 - 2 out of 2 pages.

Assignment Name: 5.03 Proving Trigonometric Equations Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side of the equation. 1.cot x sec4x = cot x + 2 tan x + tan3x sec^2=1+tan^2 Identity cot(x) (1 + tan^2(x)) (1 + tan^2(x))= cot(x) + 2 cot(x) tan^2(x) + cot(x) tan^4(x)= cot(x) tan(x) = 1, that turns into cot(x) + 2 tan(x) + tan^3(x)=cot x + 2 tan x + tan3x 2.(sin x)(tan x cos x - cot x cos x) = 1 - 2 cos2x 1=sin^2 x+cos^2 x tanx=sinx/cosx cotx=cosx/sinx sinx[(sinx/cosx)cosx-(cosx/sinx)cosx]= Sinx is the common denominator sinx[sinx-cos^2x/sinx]=

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture