Calculus: Early Transcendentals, by Anton, 7th Edition,ch11

Calculus - Early Transcendentals

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
447 CHAPTER 11 Analytic Geometry in Calculus EXERCISE SET 11.1 1. (1, 6 ) (3, 3 ) (4, e ) (–1, r ) 0 p / 2 (5, 8 ) (–6, – p ) 2. ( , L ) 3 2 0 p / 2 (–3, i ) (–5, @ ) (2, $ ) (0, c ) (2, g ) 3. (a) (3 3 , 3) (b) ( 7 / 2 , 7 3 / 2) (c) (3 3 , 3) (d) (0 , 0) (e) ( 7 3 / 2 , 7 / 2) (f) ( 5 , 0) 4. (a) ( 4 2 , 4 2) (b) (7 2 / 2 , 7 2 / 2) (c) (4 2 , 4 2) (d) (5 , 0) (e) (0 , 2) (0 , 0) 5. (a) both (5 ) (b) (4 , 11 π/ 6) , (4 , 6) (c) (2 , 3 2) , (2 , 2) (d) (8 2 , 5 4) , (8 2 , 3 4) (e) both (6 , 2 3) both ( 2 ,π/ 4) 6. (a) (2 , 5 6) (b) ( 2 , 11 6) (c) (2 , 7 6) (d) ( 2 , 6) 7. (a) (5 , 0 . 6435) (b) ( 29 , 5 . 0929) (c) (1 . 2716 , 0 . 6658) 8. (a) (5 , 2 . 2143) (b) (3 . 4482 , 2 . 6260) (c) ( p 4+ π 2 / 36 , 0 . 2561) 9. (a) r 2 = x 2 + y 2 = 4; circle (b) y = 4; horizontal line (c) r 2 =3 r cos θ , x 2 + y 2 x ,( x 3 / 2) 2 + y 2 =9 / 4; circle (d) 3 r cos θ +2 r sin θ =6,3 x y = 6; line 10. (a) r cos θ =5, x = 5; vertical line (b) r 2 =2 r sin θ , x 2 + y 2 y , x 2 +( y 1) 2 = 1; circle (c) r 2 =4 r cos θ +4 r sin θ, x 2 + y 2 x y, ( x 2) 2 y 2) 2 = 8; circle (d) r = 1 cos θ sin θ cos θ , r cos 2 θ = sin θ , r 2 cos 2 θ = r sin θ , x 2 = y ; parabola 11. (a) r cos θ =7 (b) r (c) r 2 6 r sin θ =0, r = 6 sin θ (d) 4( r cos θ )( r sin θ )=9,4 r 2 sin θ cos θ =9, r 2 sin 2 θ / 2 12. (a) r sin θ = 3 (b) r = 5 (c) r 2 r cos θ r = 4 cos θ (d) r 4 cos 2 θ = r 2 sin 2 θ , r 2 = tan 2 θ , r = tan θ
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
448 Chapter 11 13. 0 p / 2 -3 -3 3 3 r = 3 sin 2 θ 14. -3 3 -2.25 2.25 r = 2 cos 3 θ 15. 0 p /2 -4 4 -1 r =3 4 sin 3 θ 16. 0 p /2 r =2+2sin θ 17. (a) r =5 (b) ( x 3) 2 + y 2 =9 ,r = 6 cos θ (c) Example 6, r =1 cos θ 18. (a) From (8-9), r = a ± b sin θ or r = a ± b cos θ . The curve is not symmetric about the y -axis, so Theorem 11.2.1(a) eliminates the sine function, thus r = a ± b cos θ . The cartesian point ( 3 , 0) is either the polar point (3 )o r( 3 , 0), and the cartesian point ( 1 , 0) is either the polar point (1 )or( 1 , 0). A solution is a ,b = 2; we may take the equation as r 2 cos θ . (b) x 2 +( y +3 / 2) 2 / 4 = 3 sin θ (c) Figure 11.1.18, a ,n = sin 3 θ 19. (a) Figure 11.1.18, a =2 = 3 sin 2 θ (b) From (8-9), symmetry about the y -axis and Theorem 11.1.1(b), the equation is of the form r = a ± b sin θ . The cartesian points (3 , 0) and (0 , 5) give a =3and5= a + b ,so b = 2 and r =3+2sin θ . (c) Example 8, r 2 = 9 cos 2 θ 20. (a) Example 6 rotated through π/ 2 radian: a 3 sin θ (b) Figure 11.1.18, a = cos 5 θ (c) x 2 y 2) 2 =4, r = 4 sin θ
Background image of page 2
Exercise Set 11.1 449 21. Line 2 22. Line ( 23. Circle 3 24. 4 Circle 25. 6 Circle 26. 1 2 Cardioid 27. Circle 1 2 28. 4 2 Cardioid 29. Cardioid 3 6 30. 5 10 Cardioid 31. 4 8 Cardioid 32. 1 3 1 Limaçon 33. 1 2 Cardioid 34. 17 4 Limaçon 35. 3 2 1 Limaçon 36. 42 3 Limaçon 37. Limaçon 3 38. 2 5 8 Limaçon 39. 3 5 Limaçon 7 40. 3 1 7 Limaçon 41. Lemniscate 3 42. 1 Lemniscate 43. Lemniscate 4 44. Spiral 2 p 4 p 6 p 8 p
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
450 Chapter 11 45. Spiral 2 p 4 p 6 p 8 p 46. 2 p 6 p 4 p Spiral 47. 1 Four-petal rose 48. 3 Four-petal rose 49. 9 Eight-petal rose 50. 2 Three-petal rose 51. -1 1 -1 1 52. 1 -1 -1 1 53. 3 -3 -3 3 54. 3 -3 -3 3 55. 1 -1 -1 1 56. 0 θ 8 π 57. (a) 4 π<θ< 4 π 58. In I, along the x -axis, x = r grows ever slower with θ .InI I x = r grows linearly with θ .
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 45

Calculus: Early Transcendentals, by Anton, 7th Edition,ch11...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online