{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Calculus: Early Transcendentals, by Anton, 7th Edition,ch15

# Calculus - Early Transcendentals

This preview shows pages 1–5. Sign up to view the full content.

620 CHAPTER 15 Multiple Integrals EXERCISE SET 15.1 1. Z 1 0 Z 2 0 ( x +3) dy dx = Z 1 0 (2 x +6) dx =7 2. Z 3 1 Z 1 1 (2 x 4 y ) dy dx = Z 3 1 4 xdx =16 3. Z 4 2 Z 1 0 x 2 ydxdy = Z 4 2 1 3 ydy =2 4. Z 0 2 Z 2 1 ( x 2 + y 2 ) dx dy = Z 0 2 (3+3 y 2 ) dy =14 5. Z ln 3 0 Z ln 2 0 e x + y dy dx = Z ln 3 0 e x dx 6. Z 2 0 Z 1 0 y sin xdydx = Z 2 0 1 2 sin =(1 cos 2) / 2 7. Z 0 1 Z 5 2 dx dy = Z 0 1 3 dy =3 8. Z 6 4 Z 7 3 dy dx = Z 6 4 10 dx =20 9. Z 1 0 Z 1 0 x ( xy +1) 2 dy dx = Z 1 0 µ 1 1 x +1 dx =1 ln 2 10. Z π π/ 2 Z 2 1 x cos xy dy dx = Z π 2 (sin 2 x sin x ) dx = 2 11. Z ln 2 0 Z 1 0 xy e y 2 x dy dx = Z ln 2 0 1 2 ( e x 1) dx ln 2) / 2 12. Z 4 3 Z 2 1 1 ( x + y ) 2 dy dx = Z 4 3 µ 1 x 1 x +2 dx = ln(25 / 24) 13. Z 1 1 Z 2 2 4 xy 3 dy dx = Z 1 1 0 dx =0 14. Z 1 0 Z 1 0 xy p x 2 + y 2 dy dx = Z 1 0 [ x ( x 2 +2) 1 / 2 x ( x 2 1 / 2 ] dx =(3 3 4 2+1) / 3 15. Z 1 0 Z 3 2 x p 1 x 2 dy dx = Z 1 0 x (1 x 2 ) 1 / 2 dx / 3 16. Z 2 0 Z 3 0 ( x sin y y sin x ) dy dx = Z 2 0 µ x 2 π 2 18 sin x dx = π 2 / 144 17. (a) x k = k/ 2 1 / 4 ,k , 2 , 3 , 4; y l = l/ 2 1 / 4 ,l , 2 , 3 , 4 , ZZ R f ( x, y ) dxdy 4 X k =1 4 X l =1 f ( x k ,y l )∆ A kl = 4 X k =1 4 X l =1 [( 2 1 / 4) 2 +( l/ 2 1 / 4)](1 / 2) 2 =37 / 4 (b) Z 2 0 Z 2 0 ( x 2 + y ) dxdy =28 / 3; the error is | 37 / 4 28 / 3 | / 12

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Exercise Set 15.1 621 18. (a) x k = k/ 2 1 / 4 ,k =1 , 2 , 3 , 4; y l = l/ 2 1 / 4 ,l , 2 , 3 , 4 , ZZ R f ( x, y ) dxdy 4 X k =1 4 X l =1 f ( x k ,y l )∆ A kl = 4 X k =1 4 X l =1 [( 2 1 / 4) 2( l/ 2 1 / 4)](1 / 2) 2 = 4 (b) Z 2 0 Z 2 0 ( x 2 y ) dxdy = 4; the error is zero 19. V = Z 5 3 Z 2 1 (2 x + y ) dy dx = Z 5 3 (2 x +3 / 2) dx =19 20. V = Z 3 1 Z 2 0 (3 x 3 x 2 y ) dy dx = Z 3 1 (6 x 3 +6 x 2 ) dx = 172 21. V = Z 2 0 Z 3 0 x 2 dy dx = Z 2 0 3 x 2 dx =8 22. V = Z 3 0 Z 4 0 5(1 x/ 3) dy dx = Z 3 0 5(4 4 x/ 3) dx =30 23. (a) (1, 0, 4) (2, 5, 0) x y z (b) (0, 0, 5) (3, 4, 0) (0, 4, 3) z x y 24. (a) (1, 1, 0) (0, 0, 2) x y z (b) (2, 2, 0) (2, 2, 8) x y z 25. Z 1 / 2 0 Z π 0 x cos( xy ) cos 2 πx dy dx = Z 1 / 2 0 cos 2 πx sin( xy ) i π 0 dx = Z 1 / 2 0 cos 2 sin πxdx = 1 3 π cos 3 i 1 / 2 0 = 1 3 π
622 Chapter 15 26. (a) y x z 5 3 (0, 2, 2) (5, 3, 0) (b) V = Z 5 0 Z 2 0 ydydx + Z 5 0 Z 3 2 ( 2 y +6) dy dx =10+5=15 27. f ave = 2 π Z π/ 2 0 Z 1 0 y sin xy dx dy = 2 π Z 2 0 µ cos xy i x =1 x =0 dy = 2 π Z 2 0 (1 cos y ) dy =1 2 π 28. average = 1 3 Z 3 0 Z 1 0 x ( x 2 + y ) 1 / 2 dx dy = Z 3 0 1 9 [(1 + y ) 3 / 2 y 3 / 2 ] dy = 2(31 9 3) / 45 29. T ave = 1 2 Z 1 0 Z 2 0 ( 10 8 x 2 2 y 2 ) dy dx = 1 2 Z 1 0 µ 44 3 16 x 2 dx = µ 14 3 30. f ave = 1 A ( R ) Z b a Z d c kdydx = 1 A ( R ) ( b a )( d c ) k = k 31. 1 . 381737122 32. 2 . 230985141 33. ZZ R f ( x, y ) dA = Z b a " Z d c g ( x ) h ( y ) dy ± dx = Z b a g ( x ) " Z d c h ( y ) dy ± dx = " Z b a g ( x ) dx ±" Z d c h ( y ) dy ± 34. The integral of tan x (an odd function) over the interval [ 1 , 1] is zero. 35. The Frst integral equals 1/2, the second equals 1 / 2. No, because the integrand is not continuous. EXERCISE SET 15.2 1. Z 1 0 Z x x 2 xy 2 dy dx = Z 1 0 1 3 ( x 4 x 7 ) dx / 40 2. Z 3 / 2 1 Z 3 y y ydxdy = Z 3 / 2 1 (3 y 2 y 2 ) dy =7 / 24 3. Z 3 0 Z 9 y 2 0 = Z 3 0 y p 9 y 2 dy =9 4. Z 1 1 / 4 Z x x 2 p x/y dy dx = Z 1 1 / 4 Z x x 2 x 1 / 2 y 1 / 2 dy dx = Z 1 1 / 4 2( x x 3 / 2 ) dx =13 / 80

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Exercise Set 15.2 623 5.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 37

Calculus: Early Transcendentals, by Anton, 7th Edition,ch15...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online