Calculus Third Editon By Strauss, Bradley and Smith sec6.1

Calculus (3rd Edition)

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Page 2&6 Chapter 6, Additional Appficatians of the Intagraf CHAPTER 6 Additional Applications of the Integral 6.1 Area Between Two Curran, Pagw 3fi1—362 :1 1. —za+fi-x-—5=fx-i} _- _0fi 29-9:+T=fl 9-"- my?" 1112' - 1.- jain 2: dr+ j (—sin 2:] d2: 0 m _ _1 “I” _1 I _ _.( Jparish)” 4§m2=L!2—1+1 7f: III—9+fiz-fi) — (ga— W: 1 4- (”‘13353-1 7!: (:41}3—(£—1)=|J = iiqugx‘gfld‘ {xv—1][I[r— 1}E — 11:0 1. =(_%g+§!g_§l)‘7ifi:% (m—l)[r-—l—-lj[x-1+lj:0 5:0.1, =3 -fi.1, Aral Huh-rem Two Curves P131 24!? . 112-'5§=0 Thecurveay=r=andy=3interaectnt ' (n. a) and (1, 1}. “F_E]=fl n ‘ - 1 : 9:0.5 A=I{:!-:)d=+£(zw::)dz ill-1' IE: '1 gun I :I_ 1:: I »=" a Jamal 1 I: IrJ'IIIh-IFIIIIIIH—l z... «mania E..- B ' Jaws! - #2,“! 5:125 a Fig“? I: T IF—Ey=-y Themy=§andy¥zintemct at. [-11 —1)’(fl’ a), Hit]. (1. 1}I A = 21;: — :3) it fly alumna Page 243 Chapter l5. Additional Applications of the Integral =(§. _ 1,111]; 12 The y: :1:2 — I] and y = D cum-u interned 51:61.0]. 3.” a A=J'[EI — 491a: +J(4£ - dez' u 3;: = {9: — 45’3”? + (i=3 - 92H; = 2? 13. l]. The. names inberacct. at fl]. El] and (— a. 54)and{3,5‘1]. A = 2TH]? - '1] it By inhuman! Thecurvaay=z2rlandy=flintremectat u {—1.fl)and [1, a). =2(§x3 — 1&3]: 1 2 A=J[l—:3]dr+J(E-l]dz =§E£ —1 1 4:3 + 2H; + G13 — a”: i a E 7-. (5.1. Area Between Tm Curves Page 249 16. - m 1 W11 ‘ Junmum l1nl!‘.!|}‘;ff}| 1: 'IHIilmfliIil' “VIHIII H W M “I“ il‘i " '| i Hecurvesinlemcctaflt'B} £2+3t—E=—:i+z+'f '“I'fl' 215+2x—12=D 22103 - 3r" - fl r1]: Bum-mm {H 2“”:1 _3 n The curve: intersect. at [2. E] and {-3, — Ii]. 21:? {r213 — 211+ 11M: —5 = 41.3- 9+ 12:][33 .. 125 " T The curves interment. at. {0, - 1] [—2, — 11] and [3. 59). Page 250 Chapter 6, Addfliona! Appficatim: oft-He Integral U A=I[23—l:2—6z)dz a + I[—:a+zz+6z) dz U = [37:4 — 3'59 _ 3:?)[32 itiiillflhhlfi The curves y = sin x and y = m a: intersect “5) 3“ G'T - 1r,“ A: J-(coax— sinx)dt [I = (sin a: + cos 3: ”TE!“ Thecurves y=ldx —1|a-l1d y: a: - 5 r-- nol. intersect on [I], ll]. but the absqute val- — function causes the equation of the line to change at 3:: U4. 134 The curveu y: sin rand y = sin Exititerscct A =I(—4z+1-— :2 + 5) d: when a: = o, «fa. and iv. ° 4 m 1, +[(4:—1-z‘+5)ds 21 = J (sin 2z—uin z] ds+ [{sill x—sin 2):] d'x ”4 a aria P 25.! .=. 16.1. Am Batman Two Cum '5' {-2E+ x — §13+521|1121 +{23’ — x — 59+5:}L1L 323 _ Tf w .um‘fllfiifl: '- (=5— 29- £+ 214: -—1 2 +I(—9+29+=—2}a l 1&1"— ga— éjz’ + 2:3le + (—‘zz‘+ §r‘+ £4? mil? 1 - cuwminhersect at (£1.21. [0, —2},anc} JI— (33-3y2-4y+12)dy -2 - '+T(—y3+:sy"+4y-12)ay 2 Page 252 152+Ex+l=4—4za §§+2:—3:0 (55- 3)(-r+1)=|] :=E,—rl [n the domain, the curves intersect at 1:: 0.5 0.6 ”:3 1 ' fir” III 0.6 =[2ln(:+ 1] - sin—1:” = 2 In 1.6 — sin-10.6 If y = f(x)ar1d y = 9(2) am given, it is best to use vertical strips because one need not solve for z = f _1(I:)m1d z = y'_ 1(z]. Tiltl’c are usually fewer integrals involved. For the same reason. if 2: = If“), x = 3(3), use horiznn‘al strips. 11'? * We want I{1_ sin y]dy=% I {1 — sin y) a’y a 0 {M"msr]|;=%[ar+msvllwé:2 (k+cmk) — 1=§KE+°J — (fl+1)] k+mek=§+% I: a: 0.34 By calculator 23. The ”nae intersect at a: = —1;the|ine 2y = 11 — a: intersects the parabola aL I: = 3 and —3.5: the line y = ?r+13 intersects the parabola at .1: : —2 and a: = 9. Chapter 5, Additional Appfifl Eon: of the In: _ A: [7:4—13—(12 -5)]d= 3 +][g(11—x)-(£—a)]dz —1 = g3+1a= - §£+54|3 Might-é:2 —§:3+521|_31 =3l+933=léfi mass This is anmcigllLl: of a circle with radiun A = :‘rflv’fif = so. Since V’s-wig: 1 implies y =1—2zla" ' ‘1 ,1 =J(1— 23“ + 2) dz: 0 =<= — WHFJIH 31. n. A horizontal strip has area d21=2tdy=21f§= - 1.7113} These strips lie between 1; = — I: and y - ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern