Calculus Third Editon By Strauss, Bradley and Smith sec6.2

Calculus (3rd Edition)

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6.2 Volume, Page: 372-376 3 v: (3 — :31 of: i = -i{3 — fisl: = 9 cubic units Using symmflry. 4 V: zlwm—z” 9 gr III = 2(161' — $9.3)” = “~39 cubic units The :u rvu intcrscct when: E~23+3=z+1 E—3:+2=n (x—QHI—lj = [l .1:=2,l [:4 — 69+ 13:;2 - lEm-I-‘fld'x _1 _a4 13 _ 2 -1152 ,z+-,_-:~" 6£+421|l = fir cubic unila é II M In PraMms 5-3, we not: thai an cguflatem! triangf: of I“: a in arm a1. Page 254 .- :Ii 5‘; Ema! Appfication: of the In tegrll 5. .. ' = I «- 1] +éffiz — 5)]3d‘r fl _' Mic that a semicircle of ' ' - '- 734%)“ : W‘ ' . The curves intermi. when :2 = —‘2£+ #2 + 23—3 = fl (Ii-3H3: - l]=fl 'f. — fix“ - 6x2+9zjt m 1' {coax—Hint: E in” 3 a. :% l [l-ainizj 6. 2‘t Vaium: Page 255 Hi} 15. Use washers; m h .dn'iiiiiiiiiiii V: I'JIHEE]: —- 3] dz = :r cubic units Us: washers; Um difiits; l V: r[[{:+ 2]“— [1+ 1):] d2: u : «(:1 + 3:”; = 41' cubic unita 17. Use disks; 1 [viii]? d:- = ‘11”: I; : cubic units 0 Use disks; (.1 + :3)“ a: ‘1 ii 1 II a. [s‘ + 2.5+ :6] d: I I ‘i' + If + g a: 2,555 cubic units “Pt: I] 3 = 71(zlfiija dx = gnu"! ‘3 = 221 cubic units a _ 5;}; Additional Appl'r'ufian: of the hate; Us: shelln: 19. Use sheila; '41 I___ I?) a; = a". cubic units Use ahsllfl: the curves in at my}? I _ : rcubic um“ 11 4 Um.- shells; Tu fiml the limits; of iuLugraljou, sul. y = 2: 2i; — ll]J : 131 so J! = flifi. Tllcll.‘ 9:2 :5: J2 -_3[[1'- :u" and the height of the vcrl.iu:n| strip at. I: la. .I.={2+.l2 A gu— 3}?) Thus. using the shell mcthud aw“; =21] 1— gr“ — 31" a; we : WE 1:2 z 111541530 cubic units Problems .9145, I': ia understood Hm! given volumes are all in cubic units. .1 a. dish: “[14 — :3.“ ch; E! Page 25.7 1 b. shells: Erin“ — x] (I: D 4 11+ wash-2m: arJlly+ l}"t — l2] rlln: 1| -I = :rj[24 — H]: + :2] a': ll 11. shells: Er [3+ 2]“ — 1:} d: W4 - 3: r11: 23.. I. sheila: Ear :Iu—a. gI_-.—-‘a. .fi II. llifilfll; I'l-H - y} :Iy U n. alumna: 2r]{y+ Unfit a y :13; U 4 :l. washers“ «furl-2}? n 2”] #3. u I =1‘jl'l - y+ 41M - 5;] fly ll 2 29.. .'. mm: film fly I) I h. dim: :[u — y“; big 0 I 2 c. awn: EIJU+ 11-534 - y! sly D u d. Nashua: rJ-[(r+ 2]2 - 2:] try .- ' a =tll4 - 93+4v'4 - Ell risr U - 2 111. I— dialm II“ — :2} d2: 1: page 253 Chapter 5. Additional Applications mm m _.-' :rfz in. n. shells: 2w] yfll — 31:: y] dy a :11: Ex wufl'llut‘u: :rj [1" — silfzy] d'y u :11: fi ' allclla: MI {3: + lHl - ai|1y}a'y U .- m ; 1cm: 1:]- [(1 + '2}? -- {r+ 219} 3'1- L1 1}“: _2 h. sheila: 2r : = «I [5 — Ilillny - aMin u- u ‘ u h. altullu: ‘3':- _ '11- I-[ln :1! via: :1 I H '- u :. wmlmm: I] Islr: :d: I] H Ii'_fi_ 4—. n . . I} I (I. ullulbl: innit I: ' l '1 4r. . 32. n: slmllmfllrl. u :1 b. washers: m- If :1“ — :3; I I “ Ill-2?. “HMIILEH V: nlflfif - [:3] c. shells: 214:; I ' “f V=wIIEflF-[fl’i :21 a - :1:_3r¢§ Intersect. where ‘ I = y = i2 : if cl. washers: “31?: I] I' 'y = D 'II 9 washers: .V~= {flu/a: _. Scctfon 62. Volume . a. By washers: 1f: it [(a:2 +1}: — 1!] d: b. By washers: V = :r-HIZE)‘z —(—,,:‘;r- 11:21:11; when :I: = I]. —2: a, By washers: u v: If [(—aF—ezji—{éfldm —2 b. By washer-e (salve y = — :2 —‘L1: {or e to find1= -2+u'4 — y]: F: Int—2 + J—“H — y: — (Vryflag . Use computer eol'tw:u'e or a graphing calculator to find the curves interned. at [1.133, 0.130} and (3.566, I271]. a. By washers: 3.553 V: r] [flu 1']:i — {lllzflfl dz 1.133 b. By washers: 1.271 v = «j [iv/fin? — M‘] e 0.13:: The curves intersect where 8‘ — 1 = 2.3-”. a” - l = 28" 2' A a: — 2 e 0 a”: 2, —l (reject) .1: = In 2: y: l a. By washers: [1.1 2 v: «I [me-=3“ r (a — 1?] d: u b. By ehel'ie: In? V = 211'] n IRE—r A lfie= — 1]] d: It The curves interned. where x2 = v— :2 -- 4.1: or Page 255' or by disks: 1 2 V=xj[1n(y+ 1‘3]i dy + xlfln 2 411ng fly e 41. The curves intersect when :2 = 3.3, or when r = I] and a: = 1. 1 a. v: glue”)? — (9)2] a: n 1 l = 3-bit“ —~ if: I] = my _ er] [1): 1w 1 b v _ 2711193” 34"”) iv a = him” ya”) dy u _ 3 n3 _ 2 ,3: 1 - f” 5f ] o = 211' 42. The curves intersect when .I:2 = :3, or when 1: = [I and e : l. Page 260 43. —- ‘1' cf: 1 a The curves intersect 5:. when = 2:, or when r = I} and .I: = _ If: :3 l _1r.|:3l D+w(r~—-fl-)U2 1 1 1 “($11” 5+2?) .1' ‘E Chapter 6, Additions! Appficm'ons of the Integral The curves interned: at w z : 2:, or when I = l]- and :I: = r 45‘. - it 22102: —- — r = 5,9 The cross section is a square of sidu 2y- and ma 4?. :5 a v: I 4(9 — than she — z?) a: — 3 0 = 9(5): — 144 cubic uuiu Thc cross section ‘15 an equilateral triangle side fly and area ifiwy)? = fig? 3 I] 41'. Section 6. 2, Vol‘um e 113. The croaa auction is n11 imsculun righl, triangle with hymn-.111an 2y illitl SlllL‘ fly with. arm .1 LI. if: I {11 — 1:2}rI1': '3 [u - :9; ii: I : “31:9: — = iiii. cubic units 4.9. r111-: cross suction is a ficniiicirclc wiLlI rmlius y and area. $4.2}? = 24:! cullio ullitii =flli-“J; SI. Sulfipom llu: Lrinngulnr brim.- llI'LH one leg If: on le y-nx'm and :l. vurtux H- on Lllu poniLlVL" 1:- axim MA” = —-I.iu1%= — -"lI1Il HIE equatitm 0|. tlli' Iilli' ii; —~'J=—i: i: ii 7‘3” 'l'lu: L'l'UHH suction l?! n 51 mm: with iii-in: 3 nml I alum. I’ly"a : 4H - win-1:]? ll .Jvfi - r _ _1 2 I “a —4fll {'2 - if)" - II P. L'ml n. H “- 51 The base ol‘ the right triangle has its log: on LI“: coordinate 11mm with a. vertex at. the origin. The equation of Llu: line passing Liuough the hypolnnuiac is y = — I + -1. The diameter of a typical minioirculnr cross section of the. solid is y, and the Meal is 'l I 2_il '2 i111ny — any . 53. PuL the, uni-Lea: of f.lh: pyramid at the origin. [1.3 siclc: will in: along 1.|1u lino y : [li’i’fifdflfl] z. Hath aqua",- flicc perpendicular bu the much: will Inn-i: height of y rind width 2y. ’l'wig; Ll“,- mmi uF all I.'|u-. mutanglca l'rmn a: = Ii Lu 1-. = '13:" will givl: Lin: 1-'I;vIlIIIu.'. $25” 130 _ . '2 __ :575 )2 V_2J.£y dJ: _ 111115": (if 0 LI '18” :1'5‘ x" _ r- 431} «(am i = iifllllliiflllii n.” 5-1. The crawl xochiuu iii .1 .‘i(|Il-'II'I1. with siilu 3y. 'l‘lli: clumuul ol' mlnnm 15 ii"! = rig: if: = i.liilll(l # i: V: 23fllqflfll(l - rim U u _.i‘_:i_ '1” - 3'2""(1 " 2mm) ll. 55. a. us..- disks: V: nlir“’”]‘ rfr I = 0mm] n3 [I -I : :I'ltllzll1 = Irlil‘i 4 b. Us: shells; = En‘lrl” if: = 2r(§}zal'l2lil :. Us: washers: w: n[[y+2}2 — 2%: = 1[L:"‘”+2)’ - 4w: fit]. a. Useshells: E .4 V: Eel-2121.13 dr: b?- D in. Use shells: i s: swim: e are} a; : 4—7?“ 0 51'. Use shells and double the portion (by symmetry] above the reads. 3 las‘fi‘r a: 63.131“? re" 53. V e filth]fij+2l11.flfl]+2{l.fl5]+2(1.03] +2(0.E|9}+'2(].fll]+2[fl.93]+2(0.99} +2[e.ssj+2(n.93) +1{u.91}](1.u} dimes} a: 10.05 The volume is approximately 10.05 [1“. 59. V e: h1(1.12)+4{1.09}+2{1.n5)+4(1.03] +2wssi+4u .u1}+2m.ss)+-1{u.ss) +2(n.ne)+4[n.93}I-I-1[n.91}](2.0) =§(30.19} re 20,13 rI'he volume is approximately 20.13 In“+ Bil. Use washers with strips perptmdieular to the y-axis rotated about the reads. The element of volume is dV: «[0: + «a! — 3F)? — s — JET-7’91 e v: swim? + ewe” .— g? + o2 — if) I] Chapter 6. Additianti Appiiestiens of the in: — (b: # Eli-nit]! - 31+} — fl = ‘SllrrI-JnE — y! dy = fixbe'jri [I = Lingual: (A = 31121 area of circle) til. The cross section is a semicircle with r arena-:11».1 and volume di" = airy: d1; he] (s _ In anew: _ is” :ems s 2.3; =31; Thusll the volume of the entire sphere is v: 21:35:19} = gee. Iii. Let B be the top vertex of a reetangular 5- tetrahedron of side a. The y—axis is v ' and contains 3. The Wis passes tilm vertex A in the base. Fifi! - . 0 is the projection of H onto the base at e_e||ter of the square. Draw the herpendi 03' from 0 to a side- mntaining A in the 1 S- ,4 :- fl! o base. IEE‘I = fin. The height of the tetrahedron is H. Also if}?! = '1 . a l 75 By the Pythagorean theorem. Hz+%eg= a2 or H: in Let (r, y] be a point on iii. Then, by :9 triangles. fill-g: 7%“— 7 TE Consider a. horizontal element of area with cross section an equilateral triangle at alti y. In this triangle. :' corresponds to {‘33 = {ufija in the base, so the side oi' elements] equilateral triangle is «flit, The element of volume is W = lfiwfizfi e = tee—’5; e =%—r§(% fin —- y}dy Section 6.3. Polar Forms and Areas _ fifil fia_ fl“ y)‘ o _ _- 3 . . — 12 eublc niuts 63. Position the equilateral triangular base to reflect symmetry as in the figure below. . Using similar triangles, we see that y __ of? — a: ;?3uf2 a}? ThusI the cross-sectional triangle at. I! has area 1! A[:]=%y2=_V:—§(_flz+§fl)2 and the total volume of the solid lignre is of: Vzfijgi—fiz-l-fidfdrzfififi II} 3 ll rather than few. the volume of a tetrahedron of side 0. Thus, the figure cannot be a tetrahedron. and the conjecture is false. 64. First rotate about the startis. Use disks with vertical strips and double the portion to the right of the y-axis. The element of volume is ell-’1: tyidz: rro"'ula"il[uE — d1: |1 V :'.1'.‘11_2b:rrjl[u2 — dz if U = 21Tt1_2b1[fllz -- aft”; -1 2 _3-rat Now rotate about the fascia. Use disks with horizontal strips and double the portion above the e-axis. The element of volume is JV: mead: = Wfi—idiibi — ital liil' t r”: writhing _ 3,?) at U _ t =2fit fidgflgy — .5933” Page 253 = grail: 65. Use disks with horizontal strips for h 5 y E R. w: n: sly = auri— they r: elm“ r y?) a: truth; — lfll’: t = gear? — ante + t“) 63. Use disks with horirontal strips for I] 5 5r 5 h. 6.3 Polar Forms and Arms, Pages 331.335 Step 1. Find the simultaneous solution of the given system of equations. Step 2. Determine whether the pole lies on the two graphs. Step 3. |Graph the curves to look for other points dimers-action. Sketch the graph of the polar region whose area is to be found. Determine rays ti = or and fl = 13 that bound the region. Compute the area by the formula .3 A = Ems]? ea or I. lemniscate b. circle 1:. nose {3 petals} cl. none [spiral]: I'— eardioid 1'. line 5. lemniseate h. limacon I. rose {4 petals) b. lemnis'cate L circle cl. rose (Hi petals] e. none {spiral} f. lelnniseate 5. case (3 petals} h. cardioid a. rose {4 petals) b. circle 1:. Erase-an cl. eardio'uj f- line I'. line I. rose {5 petals} h. line ...
View Full Document

This document was uploaded on 01/24/2008.

Page1 / 11

Calculus Third Editon By Strauss, Bradley and Smith sec6.2...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online