Calculus Third Editon By Strauss, Bradley and Smith sec6.2

# Calculus (3rd Edition)

• Homework Help
• PresidentHackerCaribou10582
• 11

This preview shows pages 1–11. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6.2 Volume, Page: 372-376 3 v: (3 — :31 of: i = -i{3 — ﬁsl: = 9 cubic units Using symmﬂry. 4 V: zlwm—z” 9 gr III = 2(161' — \$9.3)” = “~39 cubic units The :u rvu intcrscct when: E~23+3=z+1 E—3:+2=n (x—QHI—lj = [l .1:=2,l [:4 — 69+ 13:;2 - lEm-I-‘ﬂd'x _1 _a4 13 _ 2 -1152 ,z+-,_-:~" 6£+421|l = ﬁr cubic unila é II M In PraMms 5-3, we not: thai an cguﬂatem! triangf: of I“: a in arm a1. Page 254 .- :Ii 5‘; Ema! Appﬁcation: of the In tegrll 5. .. ' = I «- 1] +éfﬁz — 5)]3d‘r ﬂ _' Mic that a semicircle of ' ' - '- 734%)“ : W‘ ' . The curves intermi. when :2 = —‘2£+ #2 + 23—3 = ﬂ (Ii-3H3: - l]=ﬂ 'f. — ﬁx“ - 6x2+9zjt m 1' {coax—Hint: E in” 3 a. :% l [l-ainizj 6. 2‘t Vaium: Page 255 Hi} 15. Use washers; m h .dn'iiiiiiiiiiii V: I'JIHEE]: —- 3] dz = :r cubic units Us: washers; Um diﬁits; l V: r[[{:+ 2]“— [1+ 1):] d2: u : «(:1 + 3:”; = 41' cubic unita 17. Use disks; 1 [viii]? d:- = ‘11”: I; : cubic units 0 Use disks; (.1 + :3)“ a: ‘1 ii 1 II a. [s‘ + 2.5+ :6] d: I I ‘i' + If + g a: 2,555 cubic units “Pt: I] 3 = 71(zlﬁija dx = gnu"! ‘3 = 221 cubic units a _ 5;}; Additional Appl'r'uﬁan: of the hate; Us: shelln: 19. Use sheila; '41 I___ I?) a; = a". cubic units Use ahsllﬂ: the curves in at my}? I _ : rcubic um“ 11 4 Um.- shells; Tu ﬁml the limits; of iuLugraljou, sul. y = 2: 2i; — ll]J : 131 so J! = ﬂiﬁ. Tllcll.‘ 9:2 :5: J2 -_3[[1'- :u" and the height of the vcrl.iu:n| strip at. I: la. .I.={2+.l2 A gu— 3}?) Thus. using the shell mcthud aw“; =21] 1— gr“ — 31" a; we : WE 1:2 z 111541530 cubic units Problems .9145, I': ia understood Hm! given volumes are all in cubic units. .1 a. dish: “[14 — :3.“ ch; E! Page 25.7 1 b. shells: Erin“ — x] (I: D 4 11+ wash-2m: arJlly+ l}"t — l2] rlln: 1| -I = :rj[24 — H]: + :2] a': ll 11. shells: Er [3+ 2]“ — 1:} d: W4 - 3: r11: 23.. I. sheila: Ear :Iu—a. gI_-.—-‘a. .ﬁ II. lliﬁlﬂl; I'l-H - y} :Iy U n. alumna: 2r]{y+ Unfit a y :13; U 4 :l. washers“ «furl-2}? n 2”] #3. u I =1‘jl'l - y+ 41M - 5;] fly ll 2 29.. .'. mm: ﬁlm ﬂy I) I h. dim: :[u — y“; big 0 I 2 c. awn: EIJU+ 11-534 - y! sly D u d. Nashua: rJ-[(r+ 2]2 - 2:] try .- ' a =tll4 - 93+4v'4 - Ell risr U - 2 111. I— dialm II“ — :2} d2: 1: page 253 Chapter 5. Additional Applications mm m _.-' :rfz in. n. shells: 2w] yﬂl — 31:: y] dy a :11: Ex wuﬂ'llut‘u: :rj [1" — silfzy] d'y u :11: ﬁ ' allclla: MI {3: + lHl - ai|1y}a'y U .- m ; 1cm: 1:]- [(1 + '2}? -- {r+ 219} 3'1- L1 1}“: _2 h. sheila: 2r : = «I [5 — Ilillny - aMin u- u ‘ u h. altullu: ‘3':- _ '11- I-[ln :1! via: :1 I H '- u :. wmlmm: I] Islr: :d: I] H Ii'_ﬁ_ 4—. n . . I} I (I. ullulbl: innit I: ' l '1 4r. . 32. n: slmllmﬂlrl. u :1 b. washers: m- If :1“ — :3; I I “ Ill-2?. “HMIILEH V: nlﬂﬁf - [:3] c. shells: 214:; I ' “f V=wIIEﬂF-[ﬂ’i :21 a - :1:_3r¢§ Intersect. where ‘ I = y = i2 : if cl. washers: “31?: I] I' 'y = D 'II 9 washers: .V~= {ﬂu/a: _. Scctfon 62. Volume . a. By washers: 1f: it [(a:2 +1}: — 1!] d: b. By washers: V = :r-HIZE)‘z —(—,,:‘;r- 11:21:11; when :I: = I]. —2: a, By washers: u v: If [(—aF—ezji—{éﬂdm —2 b. By washer-e (salve y = — :2 —‘L1: {or e to ﬁnd1= -2+u'4 — y]: F: Int—2 + J—“H — y: — (Vryﬂag . Use computer eol'tw:u'e or a graphing calculator to ﬁnd the curves interned. at [1.133, 0.130} and (3.566, I271]. a. By washers: 3.553 V: r] [ﬂu 1']:i — {lllzﬂfl dz 1.133 b. By washers: 1.271 v = «j [iv/ﬁn? — M‘] e 0.13:: The curves intersect where 8‘ — 1 = 2.3-”. a” - l = 28" 2' A a: — 2 e 0 a”: 2, —l (reject) .1: = In 2: y: l a. By washers: [1.1 2 v: «I [me-=3“ r (a — 1?] d: u b. By ehel'ie: In? V = 211'] n IRE—r A lﬁe= — 1]] d: It The curves interned. where x2 = v— :2 -- 4.1: or Page 255' or by disks: 1 2 V=xj[1n(y+ 1‘3]i dy + xlfln 2 411ng ﬂy e 41. The curves intersect when :2 = 3.3, or when r = I] and a: = 1. 1 a. v: glue”)? — (9)2] a: n 1 l = 3-bit“ —~ if: I] = my _ er] [1): 1w 1 b v _ 2711193” 34"”) iv a = him” ya”) dy u _ 3 n3 _ 2 ,3: 1 - f” 5f ] o = 211' 42. The curves intersect when .I:2 = :3, or when 1: = [I and e : l. Page 260 43. —- ‘1' cf: 1 a The curves intersect 5:. when = 2:, or when r = I} and .I: = _ If: :3 l _1r.|:3l D+w(r~—-ﬂ-)U2 1 1 1 “(\$11” 5+2?) .1' ‘E Chapter 6, Additions! Appﬁcm'ons of the Integral The curves interned: at w z : 2:, or when I = l]- and :I: = r 45‘. - it 22102: —- — r = 5,9 The cross section is a square of sidu 2y- and ma 4?. :5 a v: I 4(9 — than she — z?) a: — 3 0 = 9(5): — 144 cubic uuiu Thc cross section ‘15 an equilateral triangle side ﬂy and area iﬁwy)? = ﬁg? 3 I] 41'. Section 6. 2, Vol‘um e 113. The croaa auction is n11 imsculun righl, triangle with hymn-.111an 2y illitl SlllL‘ ﬂy with. arm .1 LI. if: I {11 — 1:2}rI1': '3 [u - :9; ii: I : “31:9: — = iiii. cubic units 4.9. r111-: cross suction is a ﬁcniiicirclc wiLlI rmlius y and area. \$4.2}? = 24:! cullio ullitii =ﬂli-“J; SI. Sulﬁpom llu: Lrinngulnr brim.- llI'LH one leg If: on le y-nx'm and :l. vurtux H- on Lllu poniLlVL" 1:- axim MA” = —-I.iu1%= — -"lI1Il HIE equatitm 0|. tlli' Iilli' ii; —~'J=—i: i: ii 7‘3” 'l'lu: L'l'UHH suction l?! n 51 mm: with iii-in: 3 nml I alum. I’ly"a : 4H - win-1:]? ll .Jvﬁ - r _ _1 2 I “a —4ﬂl {'2 - if)" - II P. L'ml n. H “- 51 The base ol‘ the right triangle has its log: on LI“: coordinate 11mm with a. vertex at. the origin. The equation of Llu: line passing Liuough the hypolnnuiac is y = — I + -1. The diameter of a typical minioirculnr cross section of the. solid is y, and the Meal is 'l I 2_il '2 i111ny — any . 53. PuL the, uni-Lea: of f.lh: pyramid at the origin. [1.3 siclc: will in: along 1.|1u lino y : [li’i’ﬁfdﬂﬂ] z. Hath aqua",- ﬂicc perpendicular bu the much: will Inn-i: height of y rind width 2y. ’l'wig; Ll“,- mmi uF all I.'|u-. mutanglca l'rmn a: = Ii Lu 1-. = '13:" will givl: Lin: 1-'I;vIlIIIu.'. \$25” 130 _ . '2 __ :575 )2 V_2J.£y dJ: _ 111115": (if 0 LI '18” :1'5‘ x" _ r- 431} «(am i = iiﬂlllliiﬂllii n.” 5-1. The crawl xochiuu iii .1 .‘i(|Il-'II'I1. with siilu 3y. 'l‘lli: clumuul ol' mlnnm 15 ii"! = rig: if: = i.liilll(l # i: V: 23ﬂlqﬂﬂl(l - rim U u _.i‘_:i_ '1” - 3'2""(1 " 2mm) ll. 55. a. us..- disks: V: nlir“’”]‘ rfr I = 0mm] n3 [I -I : :I'ltllzll1 = Irlil‘i 4 b. Us: shells; = En‘lrl” if: = 2r(§}zal'l2lil :. Us: washers: w: n[[y+2}2 — 2%: = 1[L:"‘”+2)’ - 4w: ﬁt]. a. Useshells: E .4 V: Eel-2121.13 dr: b?- D in. Use shells: i s: swim: e are} a; : 4—7?“ 0 51'. Use shells and double the portion (by symmetry] above the reads. 3 las‘ﬁ‘r a: 63.131“? re" 53. V e ﬁlth]ﬁj+2l11.ﬂﬂ]+2{l.ﬂ5]+2(1.03] +2(0.E|9}+'2(].ﬂl]+2[ﬂ.93]+2(0.99} +2[e.ssj+2(n.93) +1{u.91}](1.u} dimes} a: 10.05 The volume is approximately 10.05 [1“. 59. V e: h1(1.12)+4{1.09}+2{1.n5)+4(1.03] +2wssi+4u .u1}+2m.ss)+-1{u.ss) +2(n.ne)+4[n.93}I-I-1[n.91}](2.0) =§(30.19} re 20,13 rI'he volume is approximately 20.13 In“+ Bil. Use washers with strips perptmdieular to the y-axis rotated about the reads. The element of volume is dV: «[0: + «a! — 3F)? — s — JET-7’91 e v: swim? + ewe” .— g? + o2 — if) I] Chapter 6. Additianti Appiiestiens of the in: — (b: # Eli-nit]! - 31+} — ﬂ = ‘SllrrI-JnE — y! dy = ﬁxbe'jri [I = Lingual: (A = 31121 area of circle) til. The cross section is a semicircle with r arena-:11».1 and volume di" = airy: d1; he] (s _ In anew: _ is” :ems s 2.3; =31; Thusll the volume of the entire sphere is v: 21:35:19} = gee. Iii. Let B be the top vertex of a reetangular 5- tetrahedron of side a. The y—axis is v ' and contains 3. The Wis passes tilm vertex A in the base. Fiﬁ! - . 0 is the projection of H onto the base at e_e||ter of the square. Draw the herpendi 03' from 0 to a side- mntaining A in the 1 S- ,4 :- ﬂ! o base. IEE‘I = ﬁn. The height of the tetrahedron is H. Also if}?! = '1 . a l 75 By the Pythagorean theorem. Hz+%eg= a2 or H: in Let (r, y] be a point on iii. Then, by :9 triangles. ﬁll-g: 7%“— 7 TE Consider a. horizontal element of area with cross section an equilateral triangle at alti y. In this triangle. :' corresponds to {‘33 = {uﬁja in the base, so the side oi' elements] equilateral triangle is «flit, The element of volume is W = lﬁwﬁzﬁ e = tee—’5; e =%—r§(% ﬁn —- y}dy Section 6.3. Polar Forms and Areas _ ﬁﬁl ﬁa_ ﬂ“ y)‘ o _ _- 3 . . — 12 eublc niuts 63. Position the equilateral triangular base to reﬂect symmetry as in the ﬁgure below. . Using similar triangles, we see that y __ of? — a: ;?3uf2 a}? ThusI the cross-sectional triangle at. I! has area 1! A[:]=%y2=_V:—§(_ﬂz+§ﬂ)2 and the total volume of the solid lignre is of: Vzﬁjgi—ﬁz-l-ﬁdfdrzﬁﬁfi II} 3 ll rather than few. the volume of a tetrahedron of side 0. Thus, the ﬁgure cannot be a tetrahedron. and the conjecture is false. 64. First rotate about the startis. Use disks with vertical strips and double the portion to the right of the y-axis. The element of volume is ell-’1: tyidz: rro"'ula"il[uE — d1: |1 V :'.1'.‘11_2b:rrjl[u2 — dz if U = 21Tt1_2b1[ﬂlz -- aft”; -1 2 _3-rat Now rotate about the fascia. Use disks with horizontal strips and double the portion above the e-axis. The element of volume is JV: mead: = Wﬁ—idiibi — ital liil' t r”: writhing _ 3,?) at U _ t =2ﬁt ﬁdgﬂgy — .5933” Page 253 = grail: 65. Use disks with horizontal strips for h 5 y E R. w: n: sly = auri— they r: elm“ r y?) a: truth; — lﬂl’: t = gear? — ante + t“) 63. Use disks with horirontal strips for I] 5 5r 5 h. 6.3 Polar Forms and Arms, Pages 331.335 Step 1. Find the simultaneous solution of the given system of equations. Step 2. Determine whether the pole lies on the two graphs. Step 3. |Graph the curves to look for other points dimers-action. Sketch the graph of the polar region whose area is to be found. Determine rays ti = or and ﬂ = 13 that bound the region. Compute the area by the formula .3 A = Ems]? ea or I. lemniscate b. circle 1:. nose {3 petals} cl. none [spiral]: I'— eardioid 1'. line 5. lemniseate h. limacon I. rose {4 petals) b. lemnis'cate L circle cl. rose (Hi petals] e. none {spiral} f. lelnniseate 5. case (3 petals} h. cardioid a. rose {4 petals) b. circle 1:. Erase-an cl. eardio'uj f- line I'. line I. rose {5 petals} h. line ...
View Full Document

• '
• NoProfessor

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern