m251F05ex1

# m251F05ex1 - w Math 251 Name Test I Fall 2005(Sept 30 2005...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: w Math 251 Name Test I Fall 2005 (Sept. 30, 2005) ID Section 508 (8—9:15 am) 509 (9:35—10:50 am) 1. 2. 3. 4. Total There are a total of 4 problems. No calculators are allowed. 1. Let n be a positive integer greater than 2, and (a) Show that f satisﬁes the Laplace equation 5‘2 f 82 f 62 f fOI' (\$1,272,...71L'n)%(O,0,...,0). 2 (b) Evaluate (5%) Baa-363:2 ; (C) If n = 2 in (*), determine the value of f (1,3). (5%) 11¢ Exwﬁe'l WW“ ' ) 7 Wﬁ “7) \$2.: (2”“>X2(“‘L+H.+Xy ‘ * "3"") _ 1 ’3 I z 3—12—- : (zen) XL (7974.“ Hgf) ( JEECXf-F'" "l"ij W4 n ex} ——-—/ «a» Name 2. Let a > 0 be a given constant. A quadric surface is given as ax2+y2—az=0. (a) Find the tangent plane to'the surface at the point (a,a, a + a2). (10%) (b) Use differentials to compute an approximate value for \$/6(9.994)2 + 2505.91) (15%) with 4- decimal place accuracy. 1 7. q 1 J__ 7' (a) a: i-(ax+'l1)..x 1— of]. V5“: (mfg—‘7) = (209713“): (2‘92) ML“ 0’7):<a’a)x ' [iv 1% ez’w‘ww—W’W’W” ’5' («1%) = (am). (M, w): 24‘”) “’9’? (b) {Ax = 9-?‘14’l‘9;’0'””é A‘j ‘-‘- 15.9l—lé 1-0‘07 3 7‘ jL(x,j):iléxE{-L\$m} : ﬁonf—g—zﬁlé : \‘l 6073 +4.01 I ) M 9 (1er 9 WWA 1 -..L.—— ‘ I Z s- ”‘3'. 2 jg: 3 [oz Rwy 5%);1—3—(69‘ +1 l X «X (X,‘j)=U°)lé):-> 2%,; I 25' a; a ' [07’ 3i: ’(éth-Zs- ) 3 25‘ } I _L_. ., 0 _L,_.LL.Z;-. .0 3L(c1.?‘i4)zml)e7fv<!°,lé)+’f' .01 ’ZU") ( a” 0*”; ,0, (“0 7) r. I0_. 0_ 0024’”0' 0‘17; : {0”0‘609? : 19901. Name 3. Given two lines L1: 56:25, y=3+4s, z=—3+s, L2: \$22—15, y=——1+t, z=5~3t, } S’tER’ '(a) Show that L1 and L2 are skew lines; (7%) (b) compute the distance between L1 and L2. (15%) (a) Fwd») M1; W the 91L A; w 4pm) M12.) (aft, 1) " (—55%), “hit, 101 Z] M A; 25:2,»? (x 2,): ‘ 45:4—11‘: 3+45=—|+t .—) 3;+4-\$-—-l+‘t ~’; =5—3t9‘ 3f=8, t‘8/5' W55“? aphid/54m, 3=.—5+5=\$—3t 5% 0%.; -3+<—i)=;_3<%) 7 =9 -‘:;‘=-5,« ‘mmaota: A4. «.4 41 W Pﬁzon 0K , . - ~ A : W Jaw? (2—): 59thMnM» trio-1%,; M A; ﬁ/iﬁk f‘AfPW): ~ tux-2) +5 «1+: )~+(,(7;—3)= 0) ' Ea t ’) I ' —13;<+5x1+é3/:’l ~ _ TM out-m. m z. mm.) War at. W WWW t» Ham. d: —~————L-/"l"3‘c'l) : _ __._———’Z I 'Jg-Iaﬁrk‘M‘. rd ¢3° Name 4. (a) Let —-7x2y = 'f . ﬁst/3y) 254 + 3y271 (9:72;) 75 (070) Show that lim f (m,y) does not exist, (10%) (mm—40,0) (b) Let ' _7l.4y2 v f<\$7y) = 9334 + 5y2 + 37 If (may) 7‘4 Prove that lim :3, = 3. (Iyy)—*(0,0) f( y) (You must check the deﬁnition for a limit rigorously by an (E, 6)—argument.) (13%) <‘7’L’ZW‘1 7 / {1L— l Eamme‘CJZ 1”“ “MET ﬁwwg:%ﬁw V ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 4

m251F05ex1 - w Math 251 Name Test I Fall 2005(Sept 30 2005...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online