588
CHAPTER 9
Deflections of Beams
Use the method of superposition.
(a) D
EFLECTION
d
B
AT THE FREE END
(1) Part
CB
of the beam:
(2) Part
AC
of the beam:
(
d
B
)
2
5
d
C
1
u
C
¢
L
2
≤
5
7
PL
3
24
EI
2
u
C
5
P
(
L
/
2)
2
2
EI
2
1
(
PL
/
2)(
L
/
EI
2
5
3
PL
2
8
EI
2
d
C
5
P
(
L
/
3
3
EI
2
1
(
PL
/
L
/
2
2
EI
2
5
5
PL
3
48
EI
2
(
d
B
)
1
5
P
3
EI
1
¢
L
2
≤
3
5
PL
3
24
EI
1
(3) Total deflection at point
B
(b) P
RISMATIC BEAM
Ratio:
(c) G
RAPH OF RATIO
r
5
d
B
d
1
5
1
8
¢
1
1
7
I
1
I
2
≤
d
1
5
PL
3
3
EI
1
d
B
5
(
d
B
)
1
1
(
d
B
)
2
5
PL
3
24
EI
1
¢
1
1
7
I
1
I
2
≤
B
C
I
1
P
L
2
—
1
0.5
0
123456
I
2
I
1
—
r
Problem 9.72
The cantilever beam
ACB
shown in the figure supports
a uniform load of intensity
q
throughout its length. The beam has moments
of inertia
I
2
and
I
1
in parts
AC
and
CB
, respectively.
(a) Using the method of superposition, determine the deflection
d
B
at the free end due to the uniform load.
(b) Determine the ratio
r
of the deflection
d
B
to the deflection
d
1
at the free end of a prismatic cantilever with moment of inertia
I
1
carrying
the same load.
(c) Plot a graph of the deflection ratio
r
versus the ratio
I
2
/
I
1
of the
moments of inertia. (Let
I
2
/
I
1
vary from 1 to 5.)
B
C
A
I
1
I
2
q
L
2
—
L
2
—
C
A
I
2
P
L
2
—
PL
2
—
Nonprismatic Beams
Problem 9.71
The cantilever beam
ACB
shown in the figure has moments
of inertia
I
2
and
I
1
in parts
AC
and
CB
, respectively.
(a) Using the method of superposition, determine the deflection
d
B
at the
free end due to the load
P
.
(b) Determine the ratio
r
of the deflection
d
B
to the deflection
d
1
at the free
end of a prismatic cantilever with moment of inertia
I
1
carrying the same load.
(c) Plot a graph of the deflection ratio
r
versus the ratio
I
2
/
I
1
of the moments
of inertia. (Let
I
2
/
I
1
vary from 1 to 5.)
Solution 9.71
Cantilever beam (nonprismatic)
B
C
A
I
1
I
2
P
L
2
—
L
2
—
r
1
1.00
2
0.56
3
0.42
4
0.34
5
0.30
I
2
I
1
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentSolution 9.72
Cantilever beam (nonprismatic)
SECTION 9.7
Nonprismatic Beams
589
Use the method of superposition
(a) D
EFLECTION
d
B
AT THE FREE END
(1) Part
CB
of the beam:
(2) Part
AC
of the beam:
(
d
B
)
2
5
d
C
1
u
C
¢
L
2
≤
5
15
qL
4
128
EI
2
5
7
qL
3
48
EI
2
u
C
5
q
(
L
/
2)
3
6
EI
2
1
(
qL
/
2)(
L
/
2
2
EI
2
1
(
qL
2
/
8)(
L
/
EI
2
d
c
5
q
(
L
/
4
8
EI
2
1
¢
qL
2
≤
(
L
/
3
3
EI
2
1
¢
qL
2
8
≤
¢
L
2
≤
2
2
EI
8
5
17
qL
4
384
EI
2
(
d
B
)
1
5
q
8
EI
1
¢
L
2
≤
4
5
qL
4
128
EI
1
(3) Total deflection at point
B
(b) P
RISMATIC BEAM
Ratio:
(c) G
RAPH OF RATIO
r
5
d
B
d
1
5
1
16
¢
1
1
15
I
1
I
2
≤
d
1
5
qL
4
8
EI
1
d
B
5
(
d
B
)
1
1
(
d
B
)
2
5
qL
4
128
EI
1
¢
1
1
15
I
1
I
2
≤
I
1
B
C
q
L
2
I
2
C
A
q
L
2
—
qL
2
—
qL
2
8
—
I
2
I
1
1
1
2
3
45
0.5
O
r
Problem 9.73
A simple beam
ABCD
has moment of inertia
I
near
the supports and moment of inertia 2
I
in the middle region, as shown
in the figure. A uniform load of intensity
q
acts over the entire length
of the beam.
This is the end of the preview.
Sign up
to
access the rest of the document.
 Spring '08
 Muliana
 Moment Of Inertia, Trigraph, Second moment of area, EIA

Click to edit the document details