ch12-2 - SECTION 12.6 Polar Moments of Inertia 15 Polar...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Problem 12.6-2 Determine the polar moment of inertia ( I P ) C with respect to the centroid C for a circular sector (see Case 13, Appendix D). Solution 12.6-2 Polar moment of inertia SECTION 12.6 Polar Moments of Inertia 15 Polar Moments of Inertia Problem 12.6-1 Determine the polar moment of inertia I P of an isosceles triangle of base b and altitude h with respect to its apex (see Case 5, Appendix D) Solution 12.6-1 Polar moment of inertia P OINT C ( CENTROID ) FROM C ASE 5: ( I P ) c 5 bh 144 (4 h 2 1 3 b 2 ) P OINT A( APEX ): I P 5 bh 48 ( b 2 1 12 h 2 ) 5 bh 144 h 2 1 3 b 2 ) 1 bh 2 ¢ 2 h 3 2 I P 5 ( I P ) c 1 A ¢ 2 h 3 2 h C b A y 2/3 h P OINT O ( ORIGIN ) FROM C ASE 13: ( a 5 radians) ( I P ) o 5 a r 4 2 A 5 a r 2 P OINT C ( CENTROID ): 5 r 4 18 a (9 a 2 2 8 sin 2 a ) ( I P ) C 5 ( I P ) O 2 Ay 2 5 a r 4 2 2 a r 2 ¢ 2 r sin a 3 a 2 y 5 2 r sin a 3 a y C r O x aa y Problem 12.6-3 Determine the polar moment of inertia I P for a W 8 3 21 wide-flange section with respect to one of its outermost corners. Solution 12.6-3 Polar moment of inertia W 8 3 21 I 1 5 75.3 in. 4 I 2 5 9.77 in. 4 A 5 6.16 in. 2 Depth d 5 8.28 in. Width b 5 5.27 in. I x 5 I 1 1 A ( d / 2) 2 5 75.3 1 6.16(4.14) 2 5 180.9 in. 4 I y 5 I 2 1 A ( b / 2) 2 5 9.77 1 6.16(2.635) 2 5 52.5 in. 4 I P 5 I x 1 I y 5 233 in. 4 x C 11 2 2 y O
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
16 CHAPTER 12 Review of Centroids and Moments of Inertia Problem 12.6-4 Obtain a formula for the polar moment of inertia I P with respect to the midpoint of the hypotenuse for a right triangle of base b and height h (see Case 6, Appendix D). Solution 12.6-4 Polar moment of inertia P OINT C FROM C ASE 6: ( I P ) c 5 bh 36 ( h 2 1 b 2 ) P OINT P: 5 bh 24 ( b 2 1 h 2 ) I P 5 bh 36 ( h 2 1 b 2 ) 1 bh 2 ¢ b 2 1 h 2 36 5 b 2 36 1 h 2 36 5 b 2 1 h 2 36 d 2 5 ¢ b 2 2 b 3 2 1 ¢ h 2 2 h 3 2 A 5 bh 2 I P 5 ( I P ) c 1 Ad 2 h h /2 C b b /3 b /2 h /3 P d = CP Problem 12.6-5 Determine the polar moment of inertia ( I P ) C with respect to the centroid C for a quarter-circular spandrel (see Case 12, Appendix D). Solution 12.6-5 Polar moment of inertia P OINT O FROM C ASE 12: A 5 ¢ 1 2 p 4 r 2 y 5 (10 2 3 p ) r 3(4 2 p ) I x 5 ¢ 1 2 5 p 16 r 4 P OINT C ( CENTROID ): C OLLECT TERMS AND SIMPLIFY : (by symmetry) ( I P ) c 5 2 I x C 5 r 4 72 ¢ 176 2 84 p 1 9 p 2 4 2 p I y C 5 I x C I x C 5 r 4 144 ¢ 176 2 84 p 1 9 p 2 4 2 p 2 ¢ 1 2 p 4 ( r 2 ) B 2 3 p ) r 2 p ) R 2 Ix c 5 I x 2 Ay 2 5 ¢ 1 2 5 p 16 r 4 x yy C y r O C x C x
Background image of page 2
SECTION 12.7 Products of Inertia 17 Products of Inertia Problem 12.7-1 Using integration, determine the product of inertia I xy for the parabolic semisegment shown in Fig. 12-5 (see also Case 17 in Appendix D). Solution 12.7-1 Product of inertia Product of inertia of element dA with respect to axes through its own centroid equals zero. dI xy 5 product of inertia of element dA with respect to xy axes d 1 5 xd 2 5 y / 2 Parallel-axis theorem applied to element dA : xy 5 0 1 ( dA )( d 1 d 2 ) 5 ( ydx )( x )( y / 2) I xy 5 # dI xy 5 h 2 2 # b 0 x ¢ 1 2 x 2 b 2 2 dx 5 b 2 h 2 12 5 h 2 x 2 ¢ 1 2 x 2 b 2 2 dx dA 5 y dx 5 h ¢ 1 2 x 2 b 2 dx y h O x b dx x y /2 dA y 5 h ( 1 2 ) x 2 b 2 Problem 12.7-2 Using integration, determine the product of inertia I xy for the quarter-circular spandrel shown in Case 12, Appendix D.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 18

ch12-2 - SECTION 12.6 Polar Moments of Inertia 15 Polar...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online