function AceLumber

# function AceLumber - % values. relFreq =...

This preview shows page 1. Sign up to view the full content.

function AceLumber(lumber) % AceLumber - plot a histogram and relative distribution % curve of the input variable lumber. % INPUTS: lumber - a vector of a values to plot % OUTPUTS: none % SAMPLE CALL: first get the data: % lumberData = xlsread('QC_AceBoards.xls', 'B2:B121'); % AceLumber(lumberData); % Find the smallest and the largest values in the data lowVal = floor(min(lumber)); hiVal = ceil(max(lumber)); % Create the bins vector. Since we want bins with edges 93, 94, 95 . .. etc, % the bin centers will be 93.5, 94.5, 95.5 . .. etc. binCenters = (lowVal+0.5):1:hiVal; % Get the bin counts binCounts = hist(lumber,binCenters); % show the histogram bar(binCenters,binCounts); % Compute the relative frequency. We multiply by 100 to get the percentage
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: % values. relFreq = binCounts/sum(binCounts)*100; hold all % Plot the relative frequency in red plot(binCenters,relFreq,'- .r'); % label the tolerance limits text(98.5,relFreq(find(binCenters==98.5)),'lower limit of tolerance','color','g'); text(101.5,relFreq(find(binCenters==101.5)),'upper limit of tolerance','color','g'); % Find the bins which are within tolerance ndxInTolerance = find(binCenters &gt;= 98 &amp; binCenters &lt;= 102); % Re-plot the bins within tolerance with blue color plot(binCenters(ndxInTolerance),relFreq(ndxInTolerance),'- .b'); xlabel('Board length') ylabel('Frequency'); title('Histogram and Relative frequency'); legend('Histogram', '% Rative Frequency', 'Within tolerance');...
View Full Document

Ask a homework question - tutors are online