chap15

# chap15 - Chapter 15 Solution 1 e at e at 2 1 1 1 s L...

This preview shows pages 1–6. Sign up to view the full content.

Chapter 15, Solution 1. (a) 2 e e ) at cosh( at - at + = [] = + + = a s 1 a s 1 2 1 ) at cosh( L 2 2 a s s (b) 2 e e ) at sinh( at - at = = + = a s 1 a s 1 2 1 ) at sinh( L 2 2 a s a Chapter 15, Solution 2. (a) ) sin( ) t sin( ) cos( ) t cos( ) t ( f θ ω θ ω = [ ] [ ] ) t sin( ) sin( ) t cos( ) cos( ) s ( F ω θ ω θ = L L = ) s ( F 2 2 s ) sin( ) cos( s ω + θ ω θ (b) ) sin( ) t cos( ) cos( ) t sin( ) t ( f θ ω + θ ω = [ ] [ ] ) t sin( ) cos( ) t cos( ) sin( ) s ( F ω θ + ω θ = L L = ) s ( F 2 2 s ) cos( ) sin( s ω + θ ω θ Chapter 15, Solution 3. (a) = ) t ( u ) t 3 cos( e -2t L 9 ) 2 s ( 2 s 2 + + + (b) = ) t ( u ) t 4 sin( e -2t L 16 ) 2 s ( 4 2 + +

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(c) Since [] 2 2 a s s ) at cosh( = L = ) t ( u ) t 2 cosh( e -3t L 4 ) 3 s ( 3 s 2 + + (d) Since 2 2 a s a ) at sinh( = L [ = ) t ( u ) t sinh( e -4t L ] 1 ) 4 s ( 1 2 + (e) 4 ) 1 s ( 2 ) t 2 sin( e 2 t - + + = L If ) s ( F ) t ( f → ) s ( F ds d - ) t ( f t Thus, () [ ] 1 - 2 t - 4 ) 1 s ( 2 ds d - ) t 2 sin( e t + + = L ) 1 s ( 2 ) 4 ) 1 s (( 2 2 2 + + + = = ) t 2 sin( e t -t L 2 2 ) 4 ) 1 s (( ) 1 s ( 4 + + + Chapter 15, Solution 4. (a) 16 s se 6 e 4 s s 6 ) s ( G 2 s s 2 2 + = + = (b) 3 s e 5 s 2 ) s ( F s 2 2 + + =
Chapter 15, Solution 5. (a) [] 4 s ) 30 sin( 2 ) 30 cos( s ) 30 t 2 cos( 2 + ° ° = ° + L + ° = ° + 4 s 1 ) 30 cos( s ds d ) 30 t 2 cos( t 2 2 2 2 L () + = 1 - 2 4 s 1 s 2 3 ds d ds d + + = 2 - 2 1 - 2 4 s 1 s 2 3 s 2 4 s 2 3 ds d 3 2 2 2 2 2 2 2 2 4 s 1 s 2 3 ) s 8 ( 4 s 2 3 s 2 4 s 1 s 2 3 2 4 s 2s - 2 3 + + + + + = 3 2 2 2 2 4 s 1 s 2 3 ) s 8 ( 4 s s 3 2 s 3 s 3 - + + + + = 3 2 2 3 3 2 2 4 s s 8 s 3 4 4 s ) 4 2)(s s 3 (-3 + + + + + = = ° + ) 30 t 2 cos( t 2 L 3 2 3 2 4 s s 3 s 6 s 3 12 8 + + (b) = + = 5 t - 4 ) 2 s ( ! 4 30 e t 30 L 5 ) 2 s ( 720 + (c) = = δ ) 0 1 s ( 4 s 2 ) t ( dt d 4 ) t ( u t 2 2 L s 4 s 2 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
(d) ) t ( u e 2 ) t ( u e 2 -t 1) - -(t = [] = ) t ( u e 2 1) - -(t L 1 s e 2 + (e) Using the scaling property, = = = s 2 1 2 5 ) 2 1 ( s 1 2 1 1 5 ) 2 t ( u 5 L s 5 (f) = + = 3 1 s 6 ) t ( u e 6 3 t - L 1 s 3 18 + (g) Let f . Then, ) t ( ) t ( δ = 1 ) s ( F = . " = = δ ) 0 ( f s ) 0 ( f s ) s ( F s ) t ( f dt d ) t ( dt d 2 n 1 n n n n n n L L " = = δ 0 s 0 s 1 s ) t ( f dt d ) t ( dt d 2 n 1 n n n n n n L L = δ ) t ( dt d n n L n s Chapter 15, Solution 6. (a) [ ] = δ ) 1 t ( 2 L -s e 2 (b) [ ] = ) 2 t ( u 10 L 2s - e s 10 (c) [ ] = + ) t ( u ) 4 t ( L s 4 s 1 2 + (d) [ ] = = ) 4 t ( u e e 2 ) 4 t ( u e 2 4) - -(t -4 -t L L ) 1 s ( e e 2 4 -4s +
Chapter 15, Solution 7. (a) Since [] 2 2 4 s s ) t 4 cos( + = L , we use the linearity and shift properties to obtain = ) 1 t ( u )) 1 t ( 4 cos( 10 L 16 s e s 10 2 s - + (b) Since 3 2 s 2 t = L , s 1 ) t ( u = L , 3 t 2 - 2 ) 2 s ( 2 e t + = L , and s e ) 3 t ( u s 3 - = L = + ) 3 t ( u ) t ( u e t t 2 - 2 L s e ) 2 s ( 2 -3s 3 + + Chapter 15, Solution 8.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This document was uploaded on 01/24/2008.

### Page1 / 53

chap15 - Chapter 15 Solution 1 e at e at 2 1 1 1 s L...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online