D5_1 Report on test methods and former test results Part 1.pdf

D5_1 Report on test methods and former test results Part 1.pdf

This preview shows page 1 out of 402 pages.

Unformatted text preview: Smart Monitoring of Historic Structures D5.1 ‐ part 1: Report on test methods and former test results Grant Agreement number: 212939 Project acronym: SMooHS Project Title: Smart Monitoring of Historic Structures Funding Scheme: Collaborative Project Date of latest version of Annex I against which the assessment will be made: 2010-02-20 Report: D5.1-part 1 Report on test methods and former test results Period covered by this report: From 2008-12-01 to 2009-05-31 Dissemination level PU (Public) Authors Camilla Colla (University of Bologna), F. Grüner, B. Dieruff, K. Fiedler, G. Pascale, E. Gabrielli, A. J. Fernandez, C. Gentilini, M. Lukomsky, M. Strojecki, E. Esposito, A. Largo, V. Rajcic Project coordinator: Dr. Markus Krüger Project coordinator organisation: MPA Universität Stuttgart, Germany Tel: +49 711 6856 6789 Fax: +49 711 6856 6797 Email: [email protected] Project web site address: Doc. Name: WP5-P05-100710-SMooHS Report D5.1_part1 SMooHS D5.1-part 1 Report on test methods and former test results Table of Contents Part 1 1 Summary ............................................................................................................................. 5 2 Test techniques ................................................................................................................... 9 2.1 Accelerated ageing with climate simulation ............................................................... 9 2.2 Determination of frost resistance, freezing–thawing cycling .................................... 12 2.3 Determination of water absorption at atmospheric pressure.................................... 14 2.4 Determination of water absorption coefficient (capillarity)........................................ 16 2.5 Drilling resistance on natural and artificial stones .................................................... 19 2.6 Hygric expansion coefficient of building materials ................................................... 21 2.7 IC, ion chromatography ............................................................................................ 23 2.8 Mercury porosity....................................................................................................... 26 2.9 Moisture HF analysis................................................................................................ 29 2.10 Petrographic analysis, thin section analysis............................................................. 31 2.11 SEM / EDX, Scanning electron microscope with energy dispersive x-ray analysis . 33 2.12 TDR, time domain reflectometry .............................................................................. 36 2.13 XRD, x-ray powder diffractometry ............................................................................ 38 2.14 XRF, x-ray fluorescence........................................................................................... 40 2.15 Visual Inspection ...................................................................................................... 43 2.16 Data Fusion .............................................................................................................. 46 2.17 Drilling penetration resistance on wood ................................................................... 49 2.18 Impact-echo ............................................................................................................. 52 2.19 Radar ....................................................................................................................... 56 2.20 Radar Tomography .................................................................................................. 59 2.21 Sonic and Ultrasonic Tomography ........................................................................... 62 2.22 Sonic Test ................................................................................................................ 66 2.23 Ultrasonic Test ......................................................................................................... 69 2.24 Abrasion test ............................................................................................................ 73 2.25 Bending test on wood............................................................................................... 76 2.26 Boroscopy ................................................................................................................ 80 2.27 Compression test ..................................................................................................... 82 2.28 Displacement and deformation monitoring (gauges, extensometers, LVDT, Caliper)85 2.29 Fatigue and damage testing..................................................................................... 88 2.30 Flat-jack test ............................................................................................................. 91 2.31 Local mechanical tests (Pull-out test, Penetration test, Point load test) .................. 95 2.32 Shear and compression test .................................................................................... 99 2.33 Tensile test ............................................................................................................. 103 2.34 Acoustic Emission .................................................................................................. 105 Rev. 2012-01-20 2/402 SMooHS D5.1-part 1 Report on test methods and former test results 2.35 Laser Doppler vibrometry ....................................................................................... 108 2.36 Wireless Vibration Sensors .................................................................................... 127 2.37 Infrared thermography............................................................................................ 133 2.38 Transient excitation of wood samples using spectral analyser .............................. 138 2.39 Transversal excitation of wood samples using spectral analyser .......................... 141 2.40 Wood Ultrasonic’s .................................................................................................. 143 3 Appendix A ...................................................................................................................... 146 3.1 Accelerated ageing with climate simulation ........................................................... 146 3.2 Determination of frost resistance, freezing-thawing cycling ................................... 147 3.3 Determination of water absorption at atmospheric pressure.................................. 148 3.4 Determination of water absorption coefficient (capillarity)...................................... 149 3.5 Drilling resistance on natural and artificial stones .................................................. 153 3.6 Hygric expansion coefficient of buildings materials................................................ 155 3.7 IC, ion chromatography .......................................................................................... 156 3.8 Mercury porosity..................................................................................................... 157 3.9 Moisture HF analysis.............................................................................................. 160 3.10 Petrographic analysis, thin section analysis........................................................... 161 3.11 SEM/EDX, Scanning electron microscope with energy dispersive x-ray analysis . 162 3.12 TDR, time domain reflectometry ............................................................................ 163 3.13 XRD, x-ray powder diffractometry .......................................................................... 165 3.14 XRF, x-ray fluorescence......................................................................................... 166 3.15 Data Fusion ............................................................................................................ 167 3.16 Drilling penetration resistance on wood ................................................................. 178 3.17 Impact-echo ........................................................................................................... 187 3.18 Radar ..................................................................................................................... 224 3.19 Radar Tomography ................................................................................................ 231 3.20 Sonic and Ultrasonic Tomography ......................................................................... 240 3.21 Sonic Test .............................................................................................................. 268 3.22 Ultrasonic test ........................................................................................................ 275 3.23 Abrasion test .......................................................................................................... 288 3.24 Bending test on wood............................................................................................. 289 3.25 Boroscopy .............................................................................................................. 291 3.26 Compression test ................................................................................................... 292 3.27 Displacement and deformation monitoring............................................................. 299 3.28 Fatigue and damage testing................................................................................... 300 3.29 Flat-jack testing ...................................................................................................... 304 3.30 Local mechanical tests ........................................................................................... 306 3.31 Shear and compression test .................................................................................. 307 Rev. 2012-01-20 3/402 SMooHS D5.1-part 1 Report on test methods and former test results 3.32 Tensile test ............................................................................................................. 309 3.33 Acoustic emission .................................................................................................. 311 3.34 Laser Doppler vibrometry ....................................................................................... 316 3.35 Wireless Vibration Sensors .................................................................................... 341 3.36 Infrared thermography............................................................................................ 342 3.37 Transient excitation of wood samples using spectral analyser .............................. 386 3.38 Wood Ultrasonics ................................................................................................... 391 4 List of techniques in alphabetical order ........................................................................... 401 Part 2 5 Former tests and monitoring carried out on project’s case studies 5.1 Case Study 1: Museum Island, Berlin, Germany 5.2 Case Study 2: Holy Cross Minster, Schwäbisch Gmünd, Germany 5.3 Case Study 3: Malvezzi Palace, Bologna 6 Bibliographic references to part 2 of the report 6.1 Museum Island’s objects, Berlin 6.2 Holy Cross Minster, Schwäbisch Gmünd 6.3 Malvezzi Palace, Bologna Rev. 2012-01-20 4/402 SMooHS D5.1-part 1 Report on test methods and former test results 1 Summary This report is part of the activities and deliverables of Work Package 5, Comparative Testing, of the SMOOHS project. Partners of the WP are indicated in Table 1. Table 1 – Project Partners taking part into WP5 Work package title Comparative Testing Activity Type RTD Participant number MM - participant: 1 2 5 6 7 11 12 13 16 USTUTT (MPA) AuRA UNIBO RRL PASc Artemis Cetma Riwaq UNIZAG 8 3 20.5 1 3 2.25 7.25 1 3 This document is made up of 2 parts and it reports on laboratory and in-site applicable test methods suitable for diagnose of historic structures and constructions and on review of former investigation results collected on the project’s demonstration case studies. Report on laboratory and in-site applicable test methods Objectives As stated in the Annexe I of the project proposal, one major WP5 objective is to enhance current capabilities of experimental diagnosis of structural and material deterioration affecting historic structures due to environment. Therefore, the 1st part of this report is devoted to review today’s most adequate or diffuse test methods, i.e. laboratory analysis techniques on samples and testing techniques for on purpose-built lab specimens as well as consolidated and innovative diagnostic techniques applicable on real buildings for 1-time testing or repeated monitoring, The report has a double aim: a) to present a state-of-art collection of repeated monitoring and testing techniques presently available for application in the laboratory and on site for the purpose of assessing the characteristics and conditions of materials and structural elements of historic structures; b) to compile a sort of catalogue of testing expertise, techniques and equipments available for collaborative testing inside the project consortium. This material will constitute the base point for future WP5 activities aimed at improving current diagnostic methodologies of historic structures in order to promote and favour advancements towards the conservation, preservation and better use of these Cultural Heritage objects to the advantage of this and future generations. How has the state-of-the-art work been organised in the 1st part of report The collection of information has started inviting the WP5 participant Partners to review relevant and recent scientific literature in the field, both from technical journals and books, and from symposia proceedings and reports, in a temporal window covering approximately the last 15 years. Each Partner has been invited to contribute for its specific field of expertise, so that collected material would widely cover on-site non-destructive and micro-destructive methodologies, but also visual-physical-chemical analyses including laboratory tests such as accelerated ageing or mechanical tests. Special attention has been drawn on analyses and techniques evaluating most important physical, chemical and mechanical material/structural parameters affected by the building environment - intended in an extended manner (and in function of questions raised by WP2)-. Further, specific focus has been on experimental procedures and methodologies suitable for evaluating environment driven problematic considering structural and material parameters; thus, possibilities of using techniques in a sequential, combined or comparative way has been underlined where Rev. 2012-01-20 5/402 SMooHS D5.1-part 1 Report on test methods and former test results possible. Lastly, consideration has been in particular given to parameters measurable and monitorable via sensors and systems to be developed in the project (collaborative information exchange with WP3 has been frequent), and to the various problematic and environmental conditions of the selected demonstration sites and test sites (in collaboration with WP6), Partners have summarised their literature review in provided template forms, as shown in the example in Fig. 1. Each form is dedicated to one item reviewed and it contains the main information relevant for the project. Once the literature review was completed, each Partner has compiled a technique description which is ending with a brief text of the state of art, while the compiled literature review forms have been collected in Appendix A. The technique description is made up of relevant keywords, scope and field of application, a table (an example is shown in Fig. 2 with explanation notes at page footing) including pertinent standards and guidelines, followed by a typical measurement result and the bibliographic reference list (in alphabetical order by author surname) of the items looked up during literature review. At this time point, the report presents about 40 different testing techniques. These have been organised in the report index according to the contribution of each Partner (partner sequence follows partners numbering). The reader interested in a list of techniques in alphabetical order can find it at the end of the report. Partners of the WP have contributed to compile this first part of the report as from Table 2. Partner’s number & acronym 12 CETMA DATE: 04/02/2009 Nr: 14 of 25 Bibliographic reference KEYWORDS: 1. PURPOSE OF WORK 2. RESEARCH/CASE STUDY/PROFESSIONAL WORK 3. EXPERIMENTAL WORK/MODELLING 4. DATE/TIME/ENVIRONMENTAL PARAMETERS 5. OBJECT OF WORK / MATERIALS (size, numbers, physical-mechanical properties), DURATION 6. PARAMETERS CONSIDERED 7. TECHNIQUES EMPLOYED / INSTRUMENTATION (technical specifications) 8. DATA PROCESSING/ DATA DISPLAY TYPE 9. NEW POINTS / INNOVATIVE FEATURES 10. CONCLUSIONS (also comparison with other measuring techniques, if available) 11. NOTABLE REFERENCE Nr: Fig. 1 – Example form provided to Partners for literature review. Rev. 2012-01-20 6/402 SMooHS D5.1-part 1 Report on test methods and former test results Method description Equipment Requirements1 Characterisation Physical principle NDT/ destructive Type of test Test extent2 Test depth3 Equipment Cost Required education Examination level Time effort4 Visual Electrical/Electromagnetic Acoustic Chemical Other Non-Destructive Minor destructive Destructive Single test Monitoring Punctual Area Construction element Structure 1 – 10 mm cm m High (above 50,000 €) Medium (10,000-50,000 €) Low (0-10,000 €) High Medium Low Inspector alone Inspector + specialist Specialised laboratory Limitation Test conditions Accuracy --- Advantages Disadvantages . Comments --- Level of Standardisation / guidelines / norms Fig. 2 – Example table of technique description Table 2 – List of testing techniques appearing in the report index and contributors. Techniques Partner Authors Accelerated aging with climate simulation 01 MPA USTUTT Friedrich Grüner Determination of frost resistance, freezing-thawing 01 MPA USTUTT cycling Friedrich Grüner Determination of water absorption at atmospheric 01 MPA USTUTT pressure Friedrich Grüner Determination of water absorption coefficient (capil- 01 MPA USTUTT larity) Friedrich Grüner Drilling resistance 01 MPA USTUTT Friedrich Grüner Hydro expansion coefficient of building materials 01 MPA USTUTT Friedrich Grüner IC, ion-chromatography 01 MPA USTUTT Friedrich Grüner Mercury porosity 01 MPA USTUTT Friedrich Grüner Moisture HF analysis 01 MPA USTUTT Friedrich Grüner Petrographic analysis, thin section analysis 01 MPA USTUTT Friedrich Grüner SEM /EDX, Scanning electron microscope with en- 01 MPA USTUTT Friedrich Grüner 1 Quantity of material/modality of sampling or testing/auxiliary equipment Extent of area sampled or tested 3 Useful depth from surface, reached by sampling or signal 4 Please indicate preparation or sampling time + data acquisition or testing + analysis and post-processing 2 Rev. 2012-01-20 7/402 SMooHS D5.1-part 1 Report on test methods and former test results ergy dispersive x-ray analysis TDR, Time-domain reflectometry 01 MPA USTUTT Friedrich Grüner XRD, x-ray powder diffractometry 01 MPA USTUTT Friedrich Grüner XRF, x-ray fluorescence 01 MPA USTUTT Friedrich Grüner Visual Inspection 02 AuRA Bärbel Dieruff Karl Fiedler Data Fusion 05 UNIBO Elena Gabrielli Camilla Colla Drilling penetration resistance on wood 05 UNIBO Camilla Colla Impact-echo 05 UNIBO Elena Gabrielli Camilla Colla Radar 05 UNIBO Camilla Colla Radar Tomography 05 UNIBO Camilla Colla Sonic and Ultrasonic Tomography 05 UNIBO Giovanni Pascale Camilla Colla Sonic Test 05 UNIBO Giovanni Pascale Camilla Colla Ultrasonic Test 05 UNIBO Giovanni Pascale Camilla Colla Abrasion Test 05 UNIBO Lucio Nob...
View Full Document

  • Summer '19
  • Evaluation methods, Test method, Nondestructive testing, Friedrich Grüner

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern