ch8

ch8 - SOLUTIONS TO PROBLEMS FROM CHAPTER 8 8.1. Figure...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SOLUTIONS TO PROBLEMS FROM CHAPTER 8 8.1. Figure P8.1. shows the I D- V GS characteristic for an NMOS with V DS =50 mV. It is known for this device that W= 10 μ m, L =0.5 μ m, and t ox =5 nm. a) Find the threshold voltage Since V DS =50 mV and L =0.5 μ m, the average field in the channel is 0.1 V/ μ m=1kV/cm and the device is not in the velocity saturation region. Thus the expression (Equation (8.4)) ( 29 ( 29 ' 1 2 ox DS DS D GS T GS T WC V V I V V L V V μ θ =-- +- can be used. The threshold is extrapolated from the linear region, and using Equation (8.8), 0.05 0.5 2 2 DS T T V V V V + = = + Therefore V T =0.475V. b) Find μ , the electron channel mobility at threshold. The slope of the linear region is about 160 μ A/(0.5V)=0.32mA/V. From Equation (8.7), we have ' D ox DS GS dI WC V dV L μ = Anderson & Anderson 1 November 19, 2007 Solutions Chapter 8 C ox ' = ε ox t ox = 3.9 ( 29 8.85 × 10- 14 F / cm ( 29 5 × 10- 7 cm = 6.9 × 10- 7 F / cm 2 Solving for μ we have ( 29 3 2 ' 7 2 0.5 0.32 10 / 460 10 6.9 10 / 0.05 D GS ox DS dI L dV A V cm WC V F cm V V s μ-- × = = = × ⋅ 8.2. A particular MOSFET process produces C B ' =10-7 F/cm 2 and I = 4 × 10- 20 A , and a threshold voltage of V T =0.5V. For gate oxide thicknesses of 6.5 nm and 4 nm, find n and S . Which device is better, and why? For t ox =6.5 nm, C ox ' = ε ox t ox = 3.9 8.85 × 10- 14 F / cm ( 29 6.5 × 10- 7 cm = 5.3 × 10- 7 F / cm n = 1 + C B ' C ox ' = 1 + 10- 7 5.3 × 10- 7 = 1.19 S = 2.3 kTn q = 71 mV / decade For the 4 nm oxide, ' 7 8.63 10 / ox C F cm- = × =, and n = 1 + C B ' C ox ' = 1 + 10- 7 8.63 × 10- 7 = 1.12 S = 2.3 kTn q = 2.3 ( 29 0.026 ( 29 1.12 ( 29 = 67 mV / decade The 4 nm device is better. The swing S is smaller, resulting in a sharper turn-on and thus permitting a reduced threshold voltage and a reduced power supply voltage and reduced power consumption. 8.3. a) Find W p / W n needed to match I Dsat for CMOS transistors if μ lfn = 500 cm 2 / V ⋅ s , μ lfp =200 cm 2 /V·s, L= 0.5 μ m, and V GS- V T =2.6 V. Assume that 6 4 10 / sat v cm s = × s. From Figure 8.6, we want W p W n = 1.3 . b) Find V DSsat for the NMOS and the PMOS. Anderson & Anderson 2 November 19, 2007 Solutions Chapter 8 ( 29 ( 29 ( 29 ( 29 1 2 ( ) 1 2 2 6 4 2 6 4 2 v 1 1 v 2 500 2.6 4 10 0.5 10 1 1 4 10 0.5 10 500 1.09 lfn GS T sat DSsat n nFET lfn sat nFET V V V L L cm cm V V s s cm cm cm cm s V s V μ μ-- - = +- × ⋅ = × +- × × ⋅ = (or one could read it off Figure 7.31) Similarly, ( 29 ( 29 ( 29 ( 29 1 2 ( ) 1 2 2 6 4 2 6 4 2 1 1 2 200 2.6 4 10 0.5 10 1 1 4 10 0.5 10 200 1.49 lfp GS T sat DSsat p pFET lfp sat pFET V V v V L v L cm cm V V s s cm cm cm cm s V s V μ μ-- - = +-...
View Full Document

Page1 / 12

ch8 - SOLUTIONS TO PROBLEMS FROM CHAPTER 8 8.1. Figure...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online