# Written Assignment 2.docx - Name Alexander Hale College ID...

• 11
• 100% (1) 1 out of 1 people found this document helpful

This preview shows page 1 - 4 out of 11 pages.

Name: Alexander HaleCollege ID: 0610069Thomas Edison State UniversityCalculus II (MAT-232)Section no.: OL009Semester and year: APR 2019Written Assignment 2Answer all assigned exercises, and show all work. Each exercise is worth 4 points.Section 6.24.Evaluate the integral.lnxx dx22222222221lnln( ),,,211111ln( )()ln( )ln( )2222221111ln( )()ln( )22224xxxdxuxdudx dvxdx vuvvduxxxxxdxxxdxxxxdxxxxxxcxxxc6.Evaluate the integral.lnxdxx22ln( )11ln( ),ln( )22xudxuxduuducxcxx18.Evaluate the integral.2sinxx dxWA 2, p. 1
222sin(),2sin( )22111sin( )(cos)cos()222duduxxdxuxduxdxxdxuu duucxc 22.Evaluate the integral.1230xx edx11133323232000111112332333330000011112332330000,2,,**233322*,,,*3333333212333333xxxxxxxxxxxxxxxxeeex edxuxduxdx dvedx vxxdxx eex eeeexdxux dudx dvedx vxdxx exex exeedx113300111233323*123*03*13*03*13*000033333333331*333221122***101033333339271222229622001392739272727272727522727xxxxxex exeeeeeeeeeeeeeeeeee24.Evaluate the integral.21lnxxdx2212222222211122222222211lnln( ),,,211111ln( )()ln( )ln( )22222211111111ln( )()ln( )2 ln(2)21 ln(1)12222424241*4*ln 22xxxdxuxdudx dvxdx vuvvduxxxxxdxxxdxxxxdxxxxxxxxx111113*4ln 12ln(2)1*02ln(2)424244WA 2, p. 2
46.Evaluate the integral using integration by parts and substitution.2ln(4)xxdx222221ln(4)4,2ln( )*ln( )22211111ln( )ln( ),,,()(ln( )*)2221111111(ln( ))ln( )ln( )4ln(4)42222222duduxxdxuxduxdxxdxuu duu dutudtdu dvdu vutvvdtuuuduuuuuduuuduuuucxxxc Section 6.38.Evaluate the integral.