You've reached the end of your free preview.
Want to read all 842 pages?
Unformatted text preview: Computational Fluid Dynamics 2008 “This page left intentionally blank.” Haecheon Choi · Hyoung Gwon Choi
Jung Yul Yoo (Eds.) Computational Fluid
Dynamics 2008 ABC Prof. Haecheon Choi
School of Mechanical and Aerospace Engineering
Seoul National University
San 56-1, Shinlim-dong, Kwanak-gu,
Seoul 151-742, Republic of Korea
E-mail: [email protected]
Prof. Hyoung Gwon Choi
Department of Mechanical Engineering
Seoul National University of Technology
172 Gongreung-2-dong, Nowon-gu,
Seoul 139-743, Republic of Korea
E-mail: [email protected]
Prof. Jung Yul Yoo
School of Mechanical and Aerospace Engineering
Seoul National University
San 56-1, Shinlim-dong, Kwanak-gu,
Seoul 151-742, Republic of Korea
E-mail: [email protected] ISBN 978-3-642-01272-3 e-ISBN 978-3-642-01273-0 DOI 10.1007/978-3-642-01273-0
Library of Congress Control Number: Applied for
c 2009 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Typesetting: Scientific Publishing Services Pvt. Ltd., Chennai, India.
Cover Design: WMX Design GmbH, Heidelberg.
Printed in acid-free paper
987654321
springer.com Preface We are delighted to present this book which contains the Proceedings of the Fifth
International Conference on Computational Fluid Dynamics (ICCFD5), held in
Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established
itself as the leading international conference series for scientists, mathematicians,
and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited
Lectures and 3 Keynote Lectures were delivered by renowned researchers in the
areas of innovative modeling of flow physics, innovative algorithm development
for flow simulation, optimization and control, and advanced multidisciplinary applications.
There were a total of 198 contributed abstracts submitted from 25 countries.
The executive committee consisting of C. H. Bruneau (France), J. J. Chattot
(USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for
selection of papers. Each of the members had a separate subcommittee to carry out
the evaluation. As a result of this careful peer review process, 138 papers were
accepted for oral presentation and 28 for poster presentation. Among them, 5 (3
oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster
presentation) papers were not presented. The conference was attended by 201
delegates from 23 countries. The technical aspects of the conference were highly
beneficial and informative, while the non-technical aspects were fully enjoyable
and memorable.
In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 contributed papers are grouped under 21 subject titles which are in alphabetical order.
Lastly, 12 poster presentation papers appear as Technical Notes.
Thanks are due to our sponsors, NASA Ames Research Center, Seoul National
University (SNU), The Korean Society of Mechanical Engineers, and a number of
other domestic and international organizations. In particular, the continued support
of NASA is essential for the success of this conference series. I would also like to
express my deepest gratitude to my fellow Local Organizing Committee members,
in particular, to Prof. Haecheon Choi, the Secretary General, who displayed his
utmost intelligence and resourceful dedication throughout the entire process of
ICCFD5. Further, I would like to thank my staffs in the Institute of Advanced Machinery and Design, and the graduate students in the School of Mechanical and
Aerospace Engineering, SNU, for their tremendous efforts in making this conference a success.
Seoul, Korea
January 2009 Jung Yul Yoo
Chairman “This page left intentionally blank.” Contents Part 1: Plenary Lectures
Lattice Boltzmann Methods for Viscous Fluid Flows and
Two-Phase Fluid Flows
Takaji Inamuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Coping with Uncertainty in Turbulent Flow Simulations
Pierre Sagaut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Adaptive Finite Element Discretization of Flow Problems
for Goal-Oriented Model Reduction
Rolf Rannacher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Part 2: Keynote Lectures
Progress in Computational Magneto-Fluid-Dynamics for
Flow Control
J.S. Shang, P.G. Huang, D.B. Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Part 3: Aeroacoustics 1
Computation of Noise Radiated from a Turbulent Flow
over a Cavity with Discontinuous Galerkin Method
Sungwoo Kang, Jung Yul Yoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Far–Field Noise Minimization Using an Adjoint Approach
Markus P. Rumpfkeil, David W. Zingg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Stabilized High-Order Discontinuous Galerkin Methods for
Aeroacoustic Investigations
Andreas Richter, J¨
org Stiller, Roger Grundmann . . . . . . . . . . . . . . . . . . . 77 VIII Contents Part 4: Aeroacoustics 2
Direct Simulation for Acoustic Near Fields Using the
Compressible Navier-Stokes Equation
Yasuo Obikane, Kunio Kuwahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Aeroacoustic Simulation in Automobile Muffler by Using
the Exact Compressible Navier-Stokes Equation
Yasuo Obikane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Part 5: Aeroacoustics/Elasticity
Towards Understanding the Physics of Supersonic Jet
Screech
Igor Menshov, Ilya Semenov, Ildar Ahmedyanov,
Mohammed Khalil Ibrahim, Yoshiaki Nakamura . . . . . . . . . . . . . . . . . . . . 101
Calculation of Wing Flutter Using Euler Equations with
Approximate Boundary Conditions
Biao Zhu, Zhide Qiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Direct Computation of Infrasound Propagation in
Inhomogeneous Atmosphere Using a Low-Dispersion and
Low-Dissipation Algorithm
Christophe Bailly, Christophe Bogey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Part 6: Algorithm 1
Symmetry Preserving Discretization of the Compressible
Euler Equations
Emma Hoarau, Pierre Sagaut, Claire David, Thiˆen-Hiˆep Lˆe . . . . . . . . . 121
A Numerical Diffusion Flux Based on the Diffusive
Riemannproblem
Claus-Dieter Munz, Gregor Gassner, Frieder L¨
orcher . . . . . . . . . . . . . . . 127 Part 7: Algorithm 2
Enhancement of the Computational Efficiency of UFP via
a MWM
Hyung-Min Kang, Kyu-Hong Kim, Dong-Ho Lee, Do-Hyung Lee . . . . . 135 Contents IX A High-Order Accurate Implicit Operator Scheme for
Solving Steady Incompressible Viscous Flows Using
Artificial Compressibility Method
Kazem Hejranfar, Ali Khajeh Saeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Development of a Coupled and Unified Solution Method
for Fluid-Structure Interactions
V. Sankaran, J. Sitaraman, B. Flynt, C. Farhat . . . . . . . . . . . . . . . . . . . 147 Part 8: Algorithm 3
Development of AUSM-Type Solver for Analysis of Ideal
Magnetohydrodynamic Flows
Sang Hoon Han, Jeong Il Lee, Kyu Hong Kim . . . . . . . . . . . . . . . . . . . . . 155
An Implicit Parallel Fully Compressible Roe Based Solver
for Subsonic and Supersonic Reacting Flows
T. Belmrabet, M. Talice, G. Delussu, S. Hanchi . . . . . . . . . . . . . . . . . . . . 167 Part 9: Bio-fluid Mechanics 1
Rheology of Blood Flow in a Branched Arterial System
with Three-Dimension Model
Ha-Hai Vu, Cheung-Hwa Hsu, Yaw-Hong Kang . . . . . . . . . . . . . . . . . . . . 175
The Effect of Curvature and Torsion on Steady Flow in a
Loosely Coiled Pipe
Kyung E. Lee, Jung Y. Yoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Part 10: Bio-fluid Mechanics 2
Analysis of the Unsteady Flow and Forces in an AAA
Endovascular Stent
T. Kim, H.A. Dwyer, A. Cheer, T.B. Howell, T. Chuter,
D. Saloner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Part 11: Complex Flow 1
Computation of Low Reynolds Number Aerodynamic
Characteristics of a Flapping Wing in Free Flight
Dominic D.J. Chandar, M. Damodaran . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Application of Window Embedment Grid Technique
Yufei Zhang, Haixin Chen, Song Fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 X Contents Improved Component Buildup Method for Fast Prediction
of the Aerodynamic Performances of a Vertical Takeoff and
Landing Micro Air Vehicle
Sheila Tobing, Tiauw Hiong Go, Roxana Vasilescu . . . . . . . . . . . . . . . . . 209 Part 12: Complex Flow 2
Numerical Investigation of the Tip Leakage Flow in a
Multistage High Pressure Compressor
N. Gourdain, M. Stoll, M. Montagnac, J.F. Boussuge . . . . . . . . . . . . . . 217 Part 13: Complex Flows 3
Computational and Experimental Studies of Fluid Flow
and Heat Transfer in a Calandria Based Reactor
S.D. Ravi, N.K.S. Rajan, P.S. Kulkarni . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Part 14: Complex Flows 4
Propulsion by an Oscillating Thin Airfoil at Low Reynolds
Number
Roel M¨
uller, Akira Oyama, Kozo Fujii, Harry Hoeijmakers . . . . . . . . . . 241
Residual Currents around Plural Asymmetrical Structures
in Oscillatory Flow Fields
Rusdin Andi, Hideo Oshikawa, Akihiro Hashimoto,
Toshimitsu Komatsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Part 15: Compressible Flow 1
Stability of the MUSCL Method on General Unstructured
Grids for Applications to Compressible Fluid Flow
F. Haider, Jean-Pierre Croisille, B. Courbet . . . . . . . . . . . . . . . . . . . . . . . 255
Time-Accurate Computational Analysis of the Flame
Trench
Cetin Kiris, William Chan, Dochan Kwak, Jeffrey Housman . . . . . . . . . 261
Very High Order Residual Distribution Schemes for Steady
Flow Problems
Adam Larat, R´emi Abgrall, Mario Ricchiuto . . . . . . . . . . . . . . . . . . . . . . . 269 Contents XI Part 16: Compressible Flow 2
Shocks in Direct Numerical Simulation of the 3-D Spatially
Developing Plane Mixing Layer
Qiang Zhou, Feng He, M.Y. Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Calculation of Aerodynamic Performance of Propellers
at Low Reynolds Number Based on Reynolds-Averaged
Navier-Stokes Equations Simulation
Xu Jianhua, Song Wenping, Han Zhonghua . . . . . . . . . . . . . . . . . . . . . . . 283
Mathematical Modeling of Supersonic Turbulent Flows in
a Channel of Variable Cross-Section with Mass Supply
N.N. Fedorova, I.A. Fedorchenko, M.A. Goldfeld . . . . . . . . . . . . . . . . . . . 289
Efficient Numerical Simulation of Dense Gas Flows Past
Airfoils and Wings
Pietro Marco Congedo, Paola Cinnella, Christophe Corre . . . . . . . . . . . 295
A Dual-Time Implicit Upwind Scheme for Computing
Three-Dimensional Unsteady Compressible Flows Using
Unstructured Moving Grids
Kazem Hejranfar, Mohammad-Hadi Azampour . . . . . . . . . . . . . . . . . . . . . 301
Part 17: Error Estimation and Control
Problems Associated with Grid Convergence of Functionals
Manuel D. Salas, Harold L. Atkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Accuracy Analysis Based on a Posteriori Error Estimates
of semiGLS Stabilization of FEM for Solving Navier-Stokes
Equations
ˇıstek . . . . . . . . . . . . . . . . . . . . . . 315
Pavel Burda, Jaroslav Novotn´y, Jakub S´
Residual Adaptive Computations of Complex Turbulent
Flows
N. Ganesh, K. Ravindra, N. Balakrishnan . . . . . . . . . . . . . . . . . . . . . . . . . 321
Part 18: Flow Control/Instability
Active Control of Transitional Channel Flows with Pulsed
and Synthetic Jets Using Vortex Methods
Emmanuel Creus´e, Andr´e Giovannini, Iraj Mortazavi . . . . . . . . . . . . . . . 329 XII Contents Numerical Analysis of Control Problems for Stationary
Models of Hydrodynamics and Heat Transfer
Gennady Alekseev, Dmitry Tereshko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Frictional and Radiation Dampings on Shear Instability
Camilo E. Pinilla, Salem Bouhairie, Vincent H. Chu . . . . . . . . . . . . . . . 341
FSI Analysis of HAR Wing at Low Speed Flight Condition
JeongHwa Kim, Y.-J. Park, H.-M. Kang, S. Jun, Dong-Ho Lee . . . . . . 347
Part 19: Flow in Porous Media
3-D Numerical Simulation of Main Sieve Diaphragm with
Three Types Passageway Design in a Gas Mask Canister
Chun-Chi Li, Jr-Ming Miao, Chin-Chiang Wang, Yin-Chia Su,
Tzu-Yi Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Pore Scale Simulation of Combustion in Porous Media
May-Fun Liou, HyoungJin Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Combined Finite Element - Particles Discretisation for
Simulation of Transport-Dispersion in Porous Media
H. Beaugendre, A. Ern, S. Huberson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Part 20: Flow with Non-flat Wall
A Numerical-Asymptotic Method for Computation of
Infinite Number of Eddies of Viscous Flows in Domains
with Corners
Alexander V. Shapeev, Ping Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Part 21: Higher-Order Method 1
Implicit High-Order Compact Differencing Methods: Study
of Convergence and Stability
Meng-Sing Liou, Angelo Scandaliato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
A NLFD-Spectral Difference Scheme for Unsteady Flows
Jean-Sebastien Cagnone, Siva K. Nadarajah . . . . . . . . . . . . . . . . . . . . . . . 397
Part 22: Higher-Order Method 2
High-Order-Accurate Fluctuation Splitting Schemes
for Unsteady Hyperbolic Problems Using Lagrangian
Elements
G. Rossiello, P. De Palma, G. Pascazio, M. Napolitano . . . . . . . . . . . . . 405 Contents XIII Assessment of High-Order Algorithms for Aeroacoustic
Computation of Shock-Containing Flows
J. Berland, T. Le Garrec, X. Gloerfelt, V. Daru . . . . . . . . . . . . . . . . . . . 411
A Dynamic Spatial Filtering Procedure for Shock
Capturing in High-Order Computations
Christophe Bogey, Nicolas de Cacqueray, Christophe Bailly . . . . . . . . . . 417
A Discontinuous Galerkin Method Based on a Gas Kinetic
Scheme for the Navier-Stokes Equations on Arbitrary
Grids
Hong Luo, Kun Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Recovery Discontinuous Galerkin Jacobian-Free
Newton-Krylov Method for All-Speed Flows
HyeongKae Park, Robert Nourgaliev, Vincent Mousseau,
Dana Knoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Part 23: Higher-Order Method 3
A Characteristic-Wise Hybrid Compact-WENO Scheme
for Solving the Navier-Stokes Equations on Curvilinear
Coordinates
Zhensheng Sun, Yu-Xin Ren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
High-Order Central ENO Finite-Volume Scheme with
Adaptive Mesh Refinement for the Advection-Diffusion
Equation
Lucian Ivan, Clinton P.T. Groth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Part 24: Hypersonic and Reacting Flows
Active Control of Hypersonic Shock Layer Instability:
Direct Numerical Simulation and Experiments
T.V. Poplavskaya, A.N. Kudryavtsev, S.G. Mironov,
I.S. Tsyryulnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Part 25: Immersed Boundary Method/Cartesian Grid Method 1
A Hierarchical Nested Grid Approach for Local Refinement
Coupled with an Immersed Boundary Method
Xudong Zheng, Rajat Mittal, Yifan Peng . . . . . . . . . . . . . . . . . . . . . . . . . . 461 XIV Contents A New Cartesian Grid Method with Adaptive Mesh
Refinement for Degenerate Cut Cells on Moving
Boundaries
Hua Ji, Fue-Sang Lien, Eugene Yee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Building-Cube Method for Incompressible Flow Simulations
of Complex Geometries
Shun Takahashi, Takashi Ishida, Kazuhiro Nakahashi . . . . . . . . . . . . . . . 473 Part 26: Immersed Boundary Method/Cartesian Grid Method 2
Assessment of Regularized Delta Functions and Feedback
Forcing Schemes for an Immersed Boundary Method
Soo Jai Shin, Wei-Xi Huang, Hyung Jin Sung . . . . . . . . . . . . . . . . . . . . . 481
Simulation of a Flow around a Car, Using Cartesian
Coordinates
Akiko Mano, Kunio Kuwahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Numerical Simulation of Parachute Inflation Process
Masaya Miyoshi, Koichi Mori, Yoshiaki Nakamura . . . . . . . . . . . . . . . . . 493
A Finite-Volume Method for Convection Problems with
Embedded Moving-Boundaries
Yunus Hassen, Barry Koren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 Part 27: Kinetic Approach
Computation of Shock Structure in Diatomic Gases Using
the Generalized Boltzmann Equation
R.K. Agarwal, Felix G. Tcheremissine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
A High-Order Accurate Gas-Kinetic BGK Scheme
Qibing Li, Song Fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 Part 28: Micro/Nano Fluid Mechanics 1
Numerical Simulations of Three Dimensional Micro Flows
Charles-Henri Bruneau, Thierry Colin, Sandra Tancogne . . . . . . . . . . . . 523
Optimization of Ribbed Microchannel Heat Sink Using
Surrogate Analysis
Afzal Husain, Kwang-Yong Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 Contents XV Part 29: Micro/Nano Fluid Mechanics 2
Conformations of PMMA Thin Films on an Au (111)
Substrate: Chain-Length and Tacticity Effects
Ming-Liang Liao, Shin-Pon Ju, Ching-Ho Cheng, Wen-Jay Lee,
Jee-Gong Chang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Part 30: Multiphase Flow 1
Numerical Method for Flows of Arbitrary Substance in
Arbitrary Conditions
Satoru Yamamoto, Takashi Furusawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Fully-Implicit Interface Tracking for All-Speed Multifluid
Flows
Robert Nourgaliev, Samet Kadioglu, Vincent Mousseau . . . . . . . . . . . . . . 551
Development of Surface-Volume Tracking Method Based
on MARS
Taku Nagatake, Zensaku Kawara, Tomoaki Kunugi . . . . . . . . . . . . . . . . . 559
Part 31: Multiphase Flow 2
Adaptive Moment-of-Fluid Method for Multi-Material
Flow
Hyung Taek Ahn, Mikhail Shashkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Numerical Simulation of Underfill Flow in Flip-Chip
Packaging
Tomohisa Hashimoto, Keiichi Saito, Koji Morinishi,
Nobuyuki Satofuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Simulation of Water Advancing over Dry Bed Using
Lagrangian Blocks on Eulerian Mesh
Lai Wai Tan, Camilo E. Pinilla, Vincent H. Chu . . . . . . . . . . . . . . . . . . 579
Time-Derivative Preconditioning for Single and
Multicomponent Flows
Jeffrey A. Housman, Cetin C. Kiris, Mohamed M. Hafez . . . . . . . . . . . . 585
Part 32: Multiphase Flow 3
High-Speed Jet Formation after Solid Object Impact
Stephan Gekle, Jos´e Manuel Gordillo, Devaraj van der Meer,
Detlef Lohse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
View
Full Document
- Winter '20
- Fluid Dynamics, Takaji Inamuro