epdf.pub_computational-fluid-dynamics-2008.pdf - Computational Fluid Dynamics 2008 “This page left intentionally blank.” Haecheon Choi � Hyoung Gwon

epdf.pub_computational-fluid-dynamics-2008.pdf -...

This preview shows page 1 out of 842 pages.

You've reached the end of your free preview.

Want to read all 842 pages?

Unformatted text preview: Computational Fluid Dynamics 2008 “This page left intentionally blank.” Haecheon Choi · Hyoung Gwon Choi Jung Yul Yoo (Eds.) Computational Fluid Dynamics 2008 ABC Prof. Haecheon Choi School of Mechanical and Aerospace Engineering Seoul National University San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea E-mail: [email protected] Prof. Hyoung Gwon Choi Department of Mechanical Engineering Seoul National University of Technology 172 Gongreung-2-dong, Nowon-gu, Seoul 139-743, Republic of Korea E-mail: [email protected] Prof. Jung Yul Yoo School of Mechanical and Aerospace Engineering Seoul National University San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea E-mail: [email protected] ISBN 978-3-642-01272-3 e-ISBN 978-3-642-01273-0 DOI 10.1007/978-3-642-01273-0 Library of Congress Control Number: Applied for c 2009 Springer-Verlag Berlin Heidelberg  This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Scientific Publishing Services Pvt. Ltd., Chennai, India. Cover Design: WMX Design GmbH, Heidelberg. Printed in acid-free paper 987654321 springer.com Preface We are delighted to present this book which contains the Proceedings of the Fifth International Conference on Computational Fluid Dynamics (ICCFD5), held in Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established itself as the leading international conference series for scientists, mathematicians, and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited Lectures and 3 Keynote Lectures were delivered by renowned researchers in the areas of innovative modeling of flow physics, innovative algorithm development for flow simulation, optimization and control, and advanced multidisciplinary applications. There were a total of 198 contributed abstracts submitted from 25 countries. The executive committee consisting of C. H. Bruneau (France), J. J. Chattot (USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. As a result of this careful peer review process, 138 papers were accepted for oral presentation and 28 for poster presentation. Among them, 5 (3 oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster presentation) papers were not presented. The conference was attended by 201 delegates from 23 countries. The technical aspects of the conference were highly beneficial and informative, while the non-technical aspects were fully enjoyable and memorable. In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 contributed papers are grouped under 21 subject titles which are in alphabetical order. Lastly, 12 poster presentation papers appear as Technical Notes. Thanks are due to our sponsors, NASA Ames Research Center, Seoul National University (SNU), The Korean Society of Mechanical Engineers, and a number of other domestic and international organizations. In particular, the continued support of NASA is essential for the success of this conference series. I would also like to express my deepest gratitude to my fellow Local Organizing Committee members, in particular, to Prof. Haecheon Choi, the Secretary General, who displayed his utmost intelligence and resourceful dedication throughout the entire process of ICCFD5. Further, I would like to thank my staffs in the Institute of Advanced Machinery and Design, and the graduate students in the School of Mechanical and Aerospace Engineering, SNU, for their tremendous efforts in making this conference a success. Seoul, Korea January 2009 Jung Yul Yoo Chairman “This page left intentionally blank.” Contents Part 1: Plenary Lectures Lattice Boltzmann Methods for Viscous Fluid Flows and Two-Phase Fluid Flows Takaji Inamuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Coping with Uncertainty in Turbulent Flow Simulations Pierre Sagaut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented Model Reduction Rolf Rannacher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Part 2: Keynote Lectures Progress in Computational Magneto-Fluid-Dynamics for Flow Control J.S. Shang, P.G. Huang, D.B. Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Part 3: Aeroacoustics 1 Computation of Noise Radiated from a Turbulent Flow over a Cavity with Discontinuous Galerkin Method Sungwoo Kang, Jung Yul Yoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Far–Field Noise Minimization Using an Adjoint Approach Markus P. Rumpfkeil, David W. Zingg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Stabilized High-Order Discontinuous Galerkin Methods for Aeroacoustic Investigations Andreas Richter, J¨ org Stiller, Roger Grundmann . . . . . . . . . . . . . . . . . . . 77 VIII Contents Part 4: Aeroacoustics 2 Direct Simulation for Acoustic Near Fields Using the Compressible Navier-Stokes Equation Yasuo Obikane, Kunio Kuwahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Aeroacoustic Simulation in Automobile Muffler by Using the Exact Compressible Navier-Stokes Equation Yasuo Obikane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Part 5: Aeroacoustics/Elasticity Towards Understanding the Physics of Supersonic Jet Screech Igor Menshov, Ilya Semenov, Ildar Ahmedyanov, Mohammed Khalil Ibrahim, Yoshiaki Nakamura . . . . . . . . . . . . . . . . . . . . 101 Calculation of Wing Flutter Using Euler Equations with Approximate Boundary Conditions Biao Zhu, Zhide Qiao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Direct Computation of Infrasound Propagation in Inhomogeneous Atmosphere Using a Low-Dispersion and Low-Dissipation Algorithm Christophe Bailly, Christophe Bogey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Part 6: Algorithm 1 Symmetry Preserving Discretization of the Compressible Euler Equations Emma Hoarau, Pierre Sagaut, Claire David, Thiˆen-Hiˆep Lˆe . . . . . . . . . 121 A Numerical Diffusion Flux Based on the Diffusive Riemannproblem Claus-Dieter Munz, Gregor Gassner, Frieder L¨ orcher . . . . . . . . . . . . . . . 127 Part 7: Algorithm 2 Enhancement of the Computational Efficiency of UFP via a MWM Hyung-Min Kang, Kyu-Hong Kim, Dong-Ho Lee, Do-Hyung Lee . . . . . 135 Contents IX A High-Order Accurate Implicit Operator Scheme for Solving Steady Incompressible Viscous Flows Using Artificial Compressibility Method Kazem Hejranfar, Ali Khajeh Saeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Development of a Coupled and Unified Solution Method for Fluid-Structure Interactions V. Sankaran, J. Sitaraman, B. Flynt, C. Farhat . . . . . . . . . . . . . . . . . . . 147 Part 8: Algorithm 3 Development of AUSM-Type Solver for Analysis of Ideal Magnetohydrodynamic Flows Sang Hoon Han, Jeong Il Lee, Kyu Hong Kim . . . . . . . . . . . . . . . . . . . . . 155 An Implicit Parallel Fully Compressible Roe Based Solver for Subsonic and Supersonic Reacting Flows T. Belmrabet, M. Talice, G. Delussu, S. Hanchi . . . . . . . . . . . . . . . . . . . . 167 Part 9: Bio-fluid Mechanics 1 Rheology of Blood Flow in a Branched Arterial System with Three-Dimension Model Ha-Hai Vu, Cheung-Hwa Hsu, Yaw-Hong Kang . . . . . . . . . . . . . . . . . . . . 175 The Effect of Curvature and Torsion on Steady Flow in a Loosely Coiled Pipe Kyung E. Lee, Jung Y. Yoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Part 10: Bio-fluid Mechanics 2 Analysis of the Unsteady Flow and Forces in an AAA Endovascular Stent T. Kim, H.A. Dwyer, A. Cheer, T.B. Howell, T. Chuter, D. Saloner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Part 11: Complex Flow 1 Computation of Low Reynolds Number Aerodynamic Characteristics of a Flapping Wing in Free Flight Dominic D.J. Chandar, M. Damodaran . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Application of Window Embedment Grid Technique Yufei Zhang, Haixin Chen, Song Fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 X Contents Improved Component Buildup Method for Fast Prediction of the Aerodynamic Performances of a Vertical Takeoff and Landing Micro Air Vehicle Sheila Tobing, Tiauw Hiong Go, Roxana Vasilescu . . . . . . . . . . . . . . . . . 209 Part 12: Complex Flow 2 Numerical Investigation of the Tip Leakage Flow in a Multistage High Pressure Compressor N. Gourdain, M. Stoll, M. Montagnac, J.F. Boussuge . . . . . . . . . . . . . . 217 Part 13: Complex Flows 3 Computational and Experimental Studies of Fluid Flow and Heat Transfer in a Calandria Based Reactor S.D. Ravi, N.K.S. Rajan, P.S. Kulkarni . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Part 14: Complex Flows 4 Propulsion by an Oscillating Thin Airfoil at Low Reynolds Number Roel M¨ uller, Akira Oyama, Kozo Fujii, Harry Hoeijmakers . . . . . . . . . . 241 Residual Currents around Plural Asymmetrical Structures in Oscillatory Flow Fields Rusdin Andi, Hideo Oshikawa, Akihiro Hashimoto, Toshimitsu Komatsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Part 15: Compressible Flow 1 Stability of the MUSCL Method on General Unstructured Grids for Applications to Compressible Fluid Flow F. Haider, Jean-Pierre Croisille, B. Courbet . . . . . . . . . . . . . . . . . . . . . . . 255 Time-Accurate Computational Analysis of the Flame Trench Cetin Kiris, William Chan, Dochan Kwak, Jeffrey Housman . . . . . . . . . 261 Very High Order Residual Distribution Schemes for Steady Flow Problems Adam Larat, R´emi Abgrall, Mario Ricchiuto . . . . . . . . . . . . . . . . . . . . . . . 269 Contents XI Part 16: Compressible Flow 2 Shocks in Direct Numerical Simulation of the 3-D Spatially Developing Plane Mixing Layer Qiang Zhou, Feng He, M.Y. Shen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Calculation of Aerodynamic Performance of Propellers at Low Reynolds Number Based on Reynolds-Averaged Navier-Stokes Equations Simulation Xu Jianhua, Song Wenping, Han Zhonghua . . . . . . . . . . . . . . . . . . . . . . . 283 Mathematical Modeling of Supersonic Turbulent Flows in a Channel of Variable Cross-Section with Mass Supply N.N. Fedorova, I.A. Fedorchenko, M.A. Goldfeld . . . . . . . . . . . . . . . . . . . 289 Efficient Numerical Simulation of Dense Gas Flows Past Airfoils and Wings Pietro Marco Congedo, Paola Cinnella, Christophe Corre . . . . . . . . . . . 295 A Dual-Time Implicit Upwind Scheme for Computing Three-Dimensional Unsteady Compressible Flows Using Unstructured Moving Grids Kazem Hejranfar, Mohammad-Hadi Azampour . . . . . . . . . . . . . . . . . . . . . 301 Part 17: Error Estimation and Control Problems Associated with Grid Convergence of Functionals Manuel D. Salas, Harold L. Atkins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Accuracy Analysis Based on a Posteriori Error Estimates of semiGLS Stabilization of FEM for Solving Navier-Stokes Equations ˇıstek . . . . . . . . . . . . . . . . . . . . . . 315 Pavel Burda, Jaroslav Novotn´y, Jakub S´ Residual Adaptive Computations of Complex Turbulent Flows N. Ganesh, K. Ravindra, N. Balakrishnan . . . . . . . . . . . . . . . . . . . . . . . . . 321 Part 18: Flow Control/Instability Active Control of Transitional Channel Flows with Pulsed and Synthetic Jets Using Vortex Methods Emmanuel Creus´e, Andr´e Giovannini, Iraj Mortazavi . . . . . . . . . . . . . . . 329 XII Contents Numerical Analysis of Control Problems for Stationary Models of Hydrodynamics and Heat Transfer Gennady Alekseev, Dmitry Tereshko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Frictional and Radiation Dampings on Shear Instability Camilo E. Pinilla, Salem Bouhairie, Vincent H. Chu . . . . . . . . . . . . . . . 341 FSI Analysis of HAR Wing at Low Speed Flight Condition JeongHwa Kim, Y.-J. Park, H.-M. Kang, S. Jun, Dong-Ho Lee . . . . . . 347 Part 19: Flow in Porous Media 3-D Numerical Simulation of Main Sieve Diaphragm with Three Types Passageway Design in a Gas Mask Canister Chun-Chi Li, Jr-Ming Miao, Chin-Chiang Wang, Yin-Chia Su, Tzu-Yi Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 Pore Scale Simulation of Combustion in Porous Media May-Fun Liou, HyoungJin Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 Combined Finite Element - Particles Discretisation for Simulation of Transport-Dispersion in Porous Media H. Beaugendre, A. Ern, S. Huberson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 Part 20: Flow with Non-flat Wall A Numerical-Asymptotic Method for Computation of Infinite Number of Eddies of Viscous Flows in Domains with Corners Alexander V. Shapeev, Ping Lin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Part 21: Higher-Order Method 1 Implicit High-Order Compact Differencing Methods: Study of Convergence and Stability Meng-Sing Liou, Angelo Scandaliato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 A NLFD-Spectral Difference Scheme for Unsteady Flows Jean-Sebastien Cagnone, Siva K. Nadarajah . . . . . . . . . . . . . . . . . . . . . . . 397 Part 22: Higher-Order Method 2 High-Order-Accurate Fluctuation Splitting Schemes for Unsteady Hyperbolic Problems Using Lagrangian Elements G. Rossiello, P. De Palma, G. Pascazio, M. Napolitano . . . . . . . . . . . . . 405 Contents XIII Assessment of High-Order Algorithms for Aeroacoustic Computation of Shock-Containing Flows J. Berland, T. Le Garrec, X. Gloerfelt, V. Daru . . . . . . . . . . . . . . . . . . . 411 A Dynamic Spatial Filtering Procedure for Shock Capturing in High-Order Computations Christophe Bogey, Nicolas de Cacqueray, Christophe Bailly . . . . . . . . . . 417 A Discontinuous Galerkin Method Based on a Gas Kinetic Scheme for the Navier-Stokes Equations on Arbitrary Grids Hong Luo, Kun Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Recovery Discontinuous Galerkin Jacobian-Free Newton-Krylov Method for All-Speed Flows HyeongKae Park, Robert Nourgaliev, Vincent Mousseau, Dana Knoll . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 Part 23: Higher-Order Method 3 A Characteristic-Wise Hybrid Compact-WENO Scheme for Solving the Navier-Stokes Equations on Curvilinear Coordinates Zhensheng Sun, Yu-Xin Ren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement for the Advection-Diffusion Equation Lucian Ivan, Clinton P.T. Groth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Part 24: Hypersonic and Reacting Flows Active Control of Hypersonic Shock Layer Instability: Direct Numerical Simulation and Experiments T.V. Poplavskaya, A.N. Kudryavtsev, S.G. Mironov, I.S. Tsyryulnikov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 Part 25: Immersed Boundary Method/Cartesian Grid Method 1 A Hierarchical Nested Grid Approach for Local Refinement Coupled with an Immersed Boundary Method Xudong Zheng, Rajat Mittal, Yifan Peng . . . . . . . . . . . . . . . . . . . . . . . . . . 461 XIV Contents A New Cartesian Grid Method with Adaptive Mesh Refinement for Degenerate Cut Cells on Moving Boundaries Hua Ji, Fue-Sang Lien, Eugene Yee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Building-Cube Method for Incompressible Flow Simulations of Complex Geometries Shun Takahashi, Takashi Ishida, Kazuhiro Nakahashi . . . . . . . . . . . . . . . 473 Part 26: Immersed Boundary Method/Cartesian Grid Method 2 Assessment of Regularized Delta Functions and Feedback Forcing Schemes for an Immersed Boundary Method Soo Jai Shin, Wei-Xi Huang, Hyung Jin Sung . . . . . . . . . . . . . . . . . . . . . 481 Simulation of a Flow around a Car, Using Cartesian Coordinates Akiko Mano, Kunio Kuwahara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Numerical Simulation of Parachute Inflation Process Masaya Miyoshi, Koichi Mori, Yoshiaki Nakamura . . . . . . . . . . . . . . . . . 493 A Finite-Volume Method for Convection Problems with Embedded Moving-Boundaries Yunus Hassen, Barry Koren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 Part 27: Kinetic Approach Computation of Shock Structure in Diatomic Gases Using the Generalized Boltzmann Equation R.K. Agarwal, Felix G. Tcheremissine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 A High-Order Accurate Gas-Kinetic BGK Scheme Qibing Li, Song Fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 Part 28: Micro/Nano Fluid Mechanics 1 Numerical Simulations of Three Dimensional Micro Flows Charles-Henri Bruneau, Thierry Colin, Sandra Tancogne . . . . . . . . . . . . 523 Optimization of Ribbed Microchannel Heat Sink Using Surrogate Analysis Afzal Husain, Kwang-Yong Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 Contents XV Part 29: Micro/Nano Fluid Mechanics 2 Conformations of PMMA Thin Films on an Au (111) Substrate: Chain-Length and Tacticity Effects Ming-Liang Liao, Shin-Pon Ju, Ching-Ho Cheng, Wen-Jay Lee, Jee-Gong Chang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 Part 30: Multiphase Flow 1 Numerical Method for Flows of Arbitrary Substance in Arbitrary Conditions Satoru Yamamoto, Takashi Furusawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 Fully-Implicit Interface Tracking for All-Speed Multifluid Flows Robert Nourgaliev, Samet Kadioglu, Vincent Mousseau . . . . . . . . . . . . . . 551 Development of Surface-Volume Tracking Method Based on MARS Taku Nagatake, Zensaku Kawara, Tomoaki Kunugi . . . . . . . . . . . . . . . . . 559 Part 31: Multiphase Flow 2 Adaptive Moment-of-Fluid Method for Multi-Material Flow Hyung Taek Ahn, Mikhail Shashkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 Numerical Simulation of Underfill Flow in Flip-Chip Packaging Tomohisa Hashimoto, Keiichi Saito, Koji Morinishi, Nobuyuki Satofuka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 Simulation of Water Advancing over Dry Bed Using Lagrangian Blocks on Eulerian Mesh Lai Wai Tan, Camilo E. Pinilla, Vincent H. Chu . . . . . . . . . . . . . . . . . . 579 Time-Derivative Preconditioning for Single and Multicomponent Flows Jeffrey A. Housman, Cetin C. Kiris, Mohamed M. Hafez . . . . . . . . . . . . 585 Part 32: Multiphase Flow 3 High-Speed Jet Formation after Solid Object Impact Stephan Gekle, Jos´e Manuel Gordillo, Devaraj van der Meer, Detlef Lohse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture