Beer, Johnston, Eisenberg Vector Mechanics for Engineers – Statics 8 ed Ch3.1-11_2007a

Vector Mechanics for Engineers: Statics w/CD-ROM

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 3, Problem 2. A 90-N force is applied to the control rod AB as shown. Knowing that the length of the rod is 225 mm, determine the moment of the force about point B by resolving the force into horizontal and vertical components. 4 E ,1... r5 \ A (p Bme“ C0m§onm~k ?aQ) wf oft "m I“ IF 1‘1‘3 ——l— +o RE. 30 h = F ups. @ : "F: 51m) M m Mo maizfi Cow on, V15 : FA. {filo CCCLU 3C“ 100 k) 0,53 50° $0) NOV? \‘(om cm“ gout, MAL, voh|cw~,v:1 am ‘. Sistfim Cadet/\«Affl, quocné rig vxé 39M, ewfi‘uts, fibn MB: 7/r/IIV//I/y/I/II//II/y1115W”yWIIWWWWWWl/IWMVIMWmInAmuullnrz/‘WuwwmmtwmWMWWMl/rwmmmeflvnwlyu/ i ‘ i i \ i i \ § i § ‘ K \ § § i \ \ \\\\\\\\\\\\\ \\\\\\\\\\‘\\\\\\\\\\\\\V\\\\ *\x\\\ xxxi\\\\\\\\\\\\\\\\s\\\\\\\\\\\\\\\\\\\\xxx\\\\x\\\\\\\\\\\\\\\\\\\\\\\\\x\\\x\\\x\\\\\\\\x\\\\ § 1 l Eliapter 3, Problem 7. "M/ymwmwMyfiwflw/MWIM,”gmmmmmmw x, A sign is suspended from two chains AE and BF. Knowing that the tension in BF is 200 N, determine (a) the moment about A of the force exerted by the chain at B, (b) the magnitude and sense of the vertical force applied at C which creates the same moment about A, (c) the smallest force applied at B which creates the same moment about A. E % O f6}: : 203k) Fx : \—<Lc>s (00 'o X : am 2 C200 DECO?) 60 on; g so. 4 o M 2 ‘00 U ‘3 A vs .... , 2) \» = P s” v» (p O “s \ 1r 3. Z M v \ \ w \ i\\§\§§§x§\$\§\\\§\\\i\\\\§\\\\\\\\\\§\\§\§§\xV\\\§\\§?\\§\§\\§\§§xS§xx~x§§x~xw§x§~x§x§§xw~xw§\\\\\\\V\\\!\\\1.x!\in}Rx)?1%w~$$§3§§§33§x»\?§\wa\\\\\w\§\w§w§§§\w\~\\xix3}w\\\V\\#3\\\\\\\g¥\§\x§\\\i\w\w~x\iIxxw§<§wx§w§§x§w§ww§xxxx:~xx\3‘xs‘xxxxx\aw\b\\\\\\\\\~\§\\~V~\\§\lss‘\\\\\\§\~\\x-iilibiisbi\\\\\\\\\§\§\\§\x\\x‘\l\§xxx}\§\xx§§§§\$§§\xx\ii\g§\\\\\\!\§~§\§‘§\\\~\§\§\s\\§x§ \ 3,2)vc0n4- \ Ra?) W. ‘Co/cge. "it; \i “a, \OC:\“LAD€~€\’\ C ZOOM ‘— In. 339M MM 1%? H D is:six»‘zi§$§$3::3§§is»§§§$5:§§§§§§§s§kk§ss§i§s€§§~§i§§§§e$§§§§§§i§§§§i§§§§§§§s§§«is;Eiiizs\3§s§\§\§§§§:§i§3§§s§s=5\iss§§§a§§s§s§§‘§§:\s%:§§$§‘§\§§§§§§ p PROBLEM 3.13 It is known that the connecting rod AB exerts on the crank BC a 2.5-kN force directed down and to the left along the centerline of AB. Determine the moment of that force about C. ‘ 88 mm 56 mm {3‘ Pas LAB : Elm“) + meh’y 9 “W : \50MM 1 0 6107834 3‘.“ ® -: :2 MM @: “0‘39 (Bl Sbmm 0 MM M—HDFILN) __ qumm [— qzm—l C05 ' 360mm FAB : — FAB Sun-Sf; -- Fag 6,0369% :. 0.4 mi. ~ a-ané 2 lootJL '9400 U3; 5 VNC : \ qamm; — 5(bmm6 : “0.943M5 ~0.05(om«6‘ Me‘- <.MC‘. " FAB 1 (—064; m; —-o.os7oj3x (~400L —uioo~3) um iMQ b (a Lxgfl éXL :‘l I f g t I “mmwmaw,1wan/mm,uwwlmmwflwwmamwwnflwrwmmywfl, W,,WWW,..,,W,,,,WW,mmmmwww,WWWWW,WW,WWM,WMMWWWWWWUmm,W,MW,wfl“WWW,Wm.“w,iMWWWMAWWWWWWMWWM"WWW, Chapter 3, iimbiéin ’25. Jr THO = O; + 302} "t 3:. K bfieé ah Tat " (’2 liai- : ~G;\lo;.<:oséa‘3 ~ can“; Sm to“ “\‘300’a.\l2,\\ *1? “(KL XVK "elahe. Before a telephone cable is strung, rope BAC is tied to a stake at B and is passed over a pulley at A. Knowing that portion AC of the rope lies in a plane parallel to the xy plane and that the magnitude of the tension T in the rope is 62 lb, determine the moment about 0 of the resultant force exerted on the pulley by the rope. R Q "G , 301 "El i ‘1").— where. TL ‘2: lgfi all l‘p‘g ~ bl.\ \lo.§.L - ma tip; AN?» 53;» é. ‘I {“efczllcsm'.; if. W ‘K 3 J? 3 5 v i 5 i § 4 6 1, 4, w é 1: ; i i i 5 i Z 3 WWW/WI, 5 i 4 i W W «lg/u “my 7 J , —r 2\ 7 E , f t ; ; fl Steel framing members AB, BC, and CD are joined at B and C and are braced using cables EF and EG. Knowing that E is at the midpoint of BC and that the tension in cable EF is 110 lb, determine (a) the angle I; , “3* between EF and member BC, (b) the projection on BC of the force exerted by cable EF at point E. ' IrayWu/A/l/mmanMw/«wulmazyomruo/wumw /n/”Wau—wm4w WM M WW 3 W W w , , , mmwwwwflwm,Wmmwmm,M,WW,WMWWMWMV”WWW , § 3 i 0} § M’Mfl‘erm Axe-NO vac,le r5, i 3 § ~ >‘ ’>‘ ’ C0039; x“? Q ,_ BC EI’ "PG \ 1?. EF’ :- I d3 2 322. 4% -gJHL .BQ:LH 23‘ ‘: “"I‘is’lza' + tsz E): :. 2,; (azM-H\+ (ABC-)fl +~ (“'ZLéer) W E‘) C; 2) Cea‘ée “0.522%;22 lg: @qu b0$@=~ § § 2 § 1 § K s § 3 S K 9 § 3 § 3 $ § 3 s § § K : § § K t 3K § § E s 3 K ! K i i s i s K \ 3 § K i § K § § § 3 3 § § $ § § K 3 § s s s § 3 § 2 § § 3 K § 3 3 § 3 a s K 3 2 K § § 3 K % § a 3 § 3 S ‘3 i s K § § § K s 3 § K E K s K i s § K § g § i § K § § 1 § § § i : § 3 i i V § i E § : a 3 § § § \ s Q § 3 § E K s K § E i WWWwKMW“\me\\\\\\K\\\K\W\\\m“m“WWWK«NKw\wmw“MWMWWN““M‘MN‘W‘K‘Kw”KKw«\K\~.\\““\\\\\\\\\\‘K‘Kv\\\N._\\\\m\\\wK“\\\\\\\\\\\\\\\\\»\w ¢ T ~th m. m figfig in; . 1 $01.. 1 —?C636/ 30 35?: \M’, $§$§x§x§§$¢$§§\{KVSx§x§xix§ixit$§§iixxx!ixxxxxxxK‘skxxfi‘it~K\\\§K\\»\\3§\!\K\Kixfixibxr»K‘th3!ka§1~§§§$§§§x\§\§§\»\\\\\35inV3»$xx§§§§~x§x§$§i§§§ti5§x3i3{\VxxK‘wfixk‘wSxKSSSkaisstxxx§~3§§§§§K§$§$§$is~x§§t§ié§3:53§3§5\‘5be«3xx333$xSix£5V35~§x§55§xx~§w§xi-x3§§x~3x§x~»\\\§\§§§§§§§\§\kxxxixxtxxs K_\_/ V ...
View Full Document

This homework help was uploaded on 01/29/2008 for the course PHYS 295 taught by Professor Maureena.mcgraw during the Fall '07 term at Montana.

Page1 / 7

Beer, Johnston, Eisenberg Vector Mechanics for Engineers – Statics 8 ed Ch3.1-11_2007a

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online