_Syllabus - (12168) - STA 2023-005 - Introductory Statistics - Abraha, Yonas-1 (1).pdf - Spring 2019 STA 2023 Introductory Statistics(3 credits CRN

_Syllabus - (12168) - STA 2023-005 - Introductory Statistics - Abraha, Yonas-1 (1).pdf

This preview shows page 1 - 2 out of 4 pages.

Spring 2019, STA 2023 Introductory Statistics (3 credits) CRN#: 12168 Section #: 005 Instructor : Yonas Abraha Office location: SE 219 E-mail Address: [email protected] Office hours: T 1:00 - 2:00 pm & F 12:00 - 2:00 pm . Lab location & hours : SE 350 Lecture location & hours: KH 102 Required Website: Introduction to Data Mining via LiMeS at Note: Purchase required . Prerequisite : MAC 1105 or MGF 1106 or MAC 2233 (grade of C or better in any) Course Description: STA 2023 is an introductory statistics course covering basic data analysis, data and chart manipulation, basic probability theory and simple simulations, T-tests, regression, multiple regression, confidence intervals and the normal distribution. Laboratory required. Topics Covered: Basic and descriptive statistics: mean, median, standard deviation, range, pie and bar chart, basic data manipulation and sampling procedures. Probability: uniform, binomial, and normal distributions, sampling distributions, and some basic probability computations. Inference: statistical/hypothesis testing, one-sided and two-sided t-tests, confidence intervals, interpretation of P-values. Basic regression: slope and intercept interpretation, correlation coefficients, P-values, standard error. Software: Required website: Introduction to Data Mining via LiMeS at . Go to Canvas course site for instructions to register with LiMeS. Note: Purchase required. Available online and in the FAU bookstore. There is a 21-day trial period. Plan to pay before the trial period is over to avoid missing any assessments and a $10 handling fee. Technology: This course will be mostly conducted using the Excel software package on Windows-based machines. The computers and the software will be provided in the lab SE 330/340/350. Students are required to obtain their own Excel software licenses or obtain it for free at / Objectives, Learning Outcome Goals : This course aims to impart an understanding of elementary descriptive and inferential statistics. The emphasis will be on applied problem solving and interpretation of results, although computation will also be required. Students who successfully complete this course should be able to calculate and explain basic descriptive statistics as well as basic probability theory; generate and interpret tables and graphs using Excel; make estimates of unknown parameters and conduct hypothesis tests by performing t-tests in Excel; and using Excel to construct and interpret a simple linear regression model. Successful completion of this course counts toward the computational requirement of the Gordon Rule. IFP General Education Outcomes: 1. Knowledge in several different disciplines; 2. The ability to think critically; 3. The ability to communicate effectively; 4. An appreciation for how knowledge is discovered, challenged, and transformed as it advances; and 5. An understanding of ethics and ethical behavior.
Image of page 1
Image of page 2

You've reached the end of your free preview.

Want to read all 4 pages?

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture