variation_of_parameters

variation_of_parameters - Math 107 Variation of Parameters...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 107 Variation of Parameters October 5, 2005 The ordinary differential equation L ( y ) q n ( x ) y ( n ) ( x ) + q n - 1 ( x ) y ( n - 1) ( x ) + . . . + q 1 ( x ) y 0 ( x ) + q 0 ( x ) y ( x ) = g ( x ) has solutions of the form y ( x ) = y p ( x ) + c 1 y 1 ( x ) + . . . c n y n ( x ) where y 1 , . . . y n are linearly independent solutions of the homogeneous equation L ( y i ) q n ( x ) y ( n ) i ( x ) + q n - 1 ( x ) y ( n - 1) i ( x ) + . . . + q 1 ( x ) y 0 i ( x ) + q 0 ( x ) y i ( x ) = 0 , 1 i n Here is a way to use y 1 , . . . y n and g to find y p . Define Y ( x ) = y 1 ( x ) y 2 ( x ) . . . y n ( x ) y 0 1 ( x ) y 0 2 ( x ) . . . y 0 n ( x ) . . . . . . . . . y ( n - 1) 1 ( x ) y ( n - 1) 2 ( x ) . . . y ( n - 1) n ( x ) and compute the n vector u ( x ) = Z x Y ( s ) - 1 e n g ( s ) q n ( s ) ds . Here e n is the n -th axis vector, with zeros in the first n entries and one in the last. Then y p ( x ) = e > 1 Y ( x ) u ( x ) is a particular solution of the inhomogeneous ordinary differential equation. In this expression,
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

variation_of_parameters - Math 107 Variation of Parameters...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online