20075ee1_1_HW3 - CHAPTER 3 3.1 An empty metal paint can is...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 3 3.1. An empty metal paint can is placed on a marble table, the lid is removed, and both parts are discharged (honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid, and a penny, a nickel, and a dime are glued to the thread so that they are not touching each other. The penny is given a charge of +5 nC, and the nickel and dime are discharged. The assembly is lowered into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is again touched momentarily to ground. The device is carefully disassembled with insulating gloves and tools. a) What charges are found on each of the five metallic pieces? All coins were insulated during the entire procedure, so they will retain their original charges: Penny: +5 nC; nickel: 0 ; dime: 0 . The penny’s charge will have induced an equal and opposite negative charge (-5 nC) on the inside wall of the can and lid. This left a charge layer of +5 nC on the outside surface which was neutralized by the ground connection. Therefore, the can retained a net charge of 5nC after disassembly. b) If the penny had been given a charge of +5nC, the dime a charge of 2nC, and the nickel a charge of 1nC, what would the final charge arrangement have been? Again, since the coins are insulated, they retain their original charges. The charge induced on the inside wall of the can and lid is equal to negative the sum of the coin charges, or 2nC. This is the charge that the can/lid contraption retains after grounding and disassembly. 3.2. A point charge of 20 nC is located at (4,-1,3), and a uniform line charge of -25 nC/m is lies along the intersection of the planes x = 4 and z = 6. a) Calculate D at (3,-1,0): The total flux density at the desired point is D (3 , 1 , 0) = 20 × 10 9 4 π (1 + 9) a x 3 a z 1 + 9 point charge 25 × 10 9 2 π 49 + 36 7 a x 6 a z 49 + 36 line charge = 0 . 38 a x + 0 . 13 a z nC / m 2 b) How much electric flux leaves the surface of a sphere of radius 5, centered at the origin?
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern