Dynamics test 1 formula sheet

Dynamics test 1 formula sheet - F orlVld5. CH.1CK.2;...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
F orlVld5. 5Ae.e:f CH.1- / F:: (;~, ~~. -r;\. .. t:- 9 V-=. VI:J+- J Ct(r) cJ t: t" x- ~ - -(: > J. 'X := V(t=) =5> f d\c ~ f V(f) d-l: :> x:::- ><~ f- fV(t)d-t ~ ~ ~ ~ a.( v);::- ¥""" 1: - )( -Yo j:= "3).,). . ~Kt'L'- = 9.~ I """/5'L j c1v' ~ fd.-b ,/ -' -" ,.. .. . - eJ; .::)~ - - . - y-~ 7>-] t- ~.,j,.) y -= .x.2 + ff f.) ~::r.x. 1. + J i- Vi> J bo ~ ~ a. J1. V'l V :::: Vy, + Vy ) v = Vx f-'\'- )" i<cV\ e ::: VX . /9--( v) = ~ - c..A;::. c:{~:t+.?-J l./ ~::' J C<.x~-t-C{ J :;J. rJJ. - .' V _.X - VX~_VX(o) Y..'f:: VYc -;r~ - - .> _'I9#iLJ Vf.\l " [d. "'- -)(~ XD 4 V"D t -y-~ y. + VIol - -J:3 e -- - ~ - v tJ. .{V)(o V ~.:::V J. .- '). ( -' II ) () - - --- - -- --- --. . -y- - .y~_. - 5. 1. 1 > OI.(x) -= W- - -- h::::-c. .;: 1/ > ) a{xJJ.Y -= f-vtJ.v 'fu VI> CK.2; > -- -- > .. X v- cJ.x ~:: cJ.a:x ;:; dv :: vdv J - ~kt J J t;;t # ?fX > U;y. .~t- v~,. £\::'0 v=vb ><-~ ~() +- Vo 1:. . .4 II ;::: aCt:) o..t -t- JVJ-v ::- f~Ci) c.lt v~ "-f:-I) > > ) Ol -::.ex. .!? ) v-;;.v()!tJ.--C . )( = Xo+ V 0 t i' t D. t 'J. . vJ. .-=.v/ + ~c. .. (Y-Xo) \i = rJ--F ~- i 'C: tJ-v -ct (). f 75.f - -ri: ~
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
/ t n/ C t A\// \ ~-~:.:::- \ In ?f"""'" "- : I \ \ --J-~:::"- \n h B t ~ Figure 2/9 / / fe' Path / t \ / t \ I \ ,I '" v .,( \ jet I I "C \ :1: 1 I -."'--1. p v '- -- /'- A' d f3 '- '- -- n '- / " ' -ds=pdf3 en '- /A ./ ,/ ./ I I I I I I I ,I I I I I I I I I L______---------- (b) (a) a\ " (c) Figure 2/10 2/5 NORMAL AND TANGENTIAL COORDINATES (n-f) As we mentioned in Art. 2/1, one of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of the particle. These coordinates provide a very natural description for curvilinear motion and are frequently the most direct and convenient coordinates to use. The n- and t-coordinates are considered to move along the path with the particle, as seen in Fig. 2/9 where the particle advances from A to B to C. The positive direction for n at any position is always taken toward the center of curvature of the path. As seen from Fig. 2/9, the positive n-direction will shift from one side of the curve to the other side if the curvature changes direction. Velocity and Acceleration We now use the coordinates nand t to describe the velocity v and acceleration a which were introduced in Art. 2/3 for the curvilinear motion of a particle. For this purpose, we introduce unit vectors en in the n-direction and et in the t-direction, as shown in Fig. 2/lOa for the position of the particle at point A on its path. During a differential in-
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/01/2008 for the course ESM 2304 taught by Professor Lgkraige during the Fall '08 term at Virginia Tech.

Page1 / 7

Dynamics test 1 formula sheet - F orlVld5. CH.1CK.2;...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online