This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Serge Ballif MATH 502 Homework 1 January 25, 2008 (1) Let f = u + iv be a holomorphic function of z = x + iy . Show that the function g = log  f  2 = log( u 2 + v 2 ) satisfies Laplaces equation 2 g x 2 + 2 g y 2 = 0 in a neighborhood of any point where f is a nonzero. (You may assume that u and v are twice continuously differen tiable. (Try to do this in two different ways: once by a brute force calculation using the CauchyRiemann equations and once by using the properties of the locally defined holomorphic logarithm function, discussed in lecture 5) Using the brute force method, we calculate a first partial derivative of g with respect to x g x = x [log( u 2 + v 2 )] = x [ u 2 + v 2 ] u 2 + v 2 = 2 u u x + 2 v v x u 2 + v 2 . Then the second partial with respect to x is 2 g x 2 = x " 2 u u x + 2 v v x u 2 + v 2 # = 2 ( u x ) 2 + 2 u 2 u x 2 + 2 ( v x ) 2 + 2 v 2 v x 2 ( u 2 + v 2 ) ( 2 u u x + 2 v v x ) 2 ( u 2 + v 2 ) 2 = 2 u 3 2 u x 2 + 2 u 2 ( v x ) 2 + 2 u 2 v 2 v x 2 + 2 v 2 ( u x ) 2 + 2 uv 2 2 u x 2 + 2 v 3 2 v x 2 4 uv u x v x ( u 2 + v 2 ) 2 . By symmetry 2 g y 2 = 2 u 3 2 u y 2 + 2 u 2 v y 2 + 2 u 2 v 2 v y 2 + 2 v 2 u y 2 + 2 uv 2 2 u y 2 + 2 v 3 2 v y 2 4 uv u y v y ( u 2 + v 2 ) 2 ....
View Full
Document
 Summer '08
 JOHNRIDENER
 Math

Click to edit the document details