2.1--Alg2 Worksheets-blank.pdf - CP Algebra 2 Unit 2-1...

• 59

This preview shows page 1 - 6 out of 59 pages.

1 CP Algebra 2 Unit 2-1: Factoring and Solving Quadratics WORKSHEET PACKET Name:__________________Period______ Learning Targets: 0. I can add, subtract and multiply polynomial expressions Factoring Quadratic Expressions1. I can factor using GCF. 2. I can factor by grouping. 3. I can factor when a is one.4. I can factor when a is not equal to one. 5. I can factor perfect square trinomials.6. I can factor using difference of squares.Solving Quadratic Equations7. I can solve by factoring. 8. I can solve by taking the square root. 9. I can perform operations with imaginary numbers. 10. I can solve by completing the square. 11. I can solve equations using the quadratic formula (with rationalized denominators). 12. I can use the discriminant to determine the number and type of solutions. 13. I can write quadratic equations given the real solutions.
2 LT 0 Unit 2-1 CPA2 Name __________________ Pd _______ I can add, subtract and multiply polynomial expressionsUse and attach another sheet of paper for work. Write the polynomial in standard form. Then state it’s degree.
2
)
3
Write the polynomial in standard form. Show work! 49. (x+9)(x-9) 50. (x+2)(x-2) 51.(x + 5)252. (x – 3)53. (x – 4)354. (x + 6)355. (x+1)356. (3x+ 4)217 – 56 even18) +532322xx,20) xxx322523++22) ++461918332xxx,24) xx3135+26) –6x + 9 28) –x3 + 36x2 – 16x – 3 30) 3x3 + x2 + 13x –12 32) –8x2 – 6x – 634) –8x3 – 9x2 + 48x – 7 36) –5x3 – 5x2 – 14x + 1 38) 12x3 – 96x240) 6x3 – 2x2 + 12x 42) x2 + 7x – 8 44) x3 + 3x2 46) 12x3 + 10x2 + 8x + 2 48) 8x3 – 18x2 + 15x – 9 50) 52) x2 – 6x + 9 54) x3 + 18x2 + 108x + 216 56) 9x2 + 24x + 16
2
,
– 50x + 36
x2 – 4
4 .LT 1 I can factor using GCF.Name_____________________________ Factoring by pulling out the Greatest Common FactorFactor completely. Write PRIME is the polynomial does not factor: 1) 5ax – 5a 2) 5xz + 2xy – 3yz 3) 241218432ababab+4) 392n+5) x(x +y) – y(x+y) 6) 25k3+ 20k2 + 10k 7) 8x2+ 5x – 7 8) 7ab5 – 56ab 9) mnx2– nx2+ m3x 10) x2(x2– 5) + 6(x2 – 5) 11) 6k3– 18k212) 12m7– 8m5+ 20m3 13) 6xy – 6xz – 6x 14) 3x4+ 12x2– 33 15) 8a4b4 – 28a3b3+ 4a2b2 16) 4186234kkk+
5 LT 2 I can factor by grouping. Factoring by Grouping17) xxxkk233+++18) aaadd222+19) uvuvv+++55220) m3+ m2n + mn2+ n21) 2ab + 14a + b + 7 22) 5x2y + x210y 23) 2br + 8b 3r 12 24) x2+ 3x xy 25) ac ad + bc bd 26) 3x2+ 6x 27) x4+ x37x 7 28) y3+ 3y2+3y + 9 29) y3+ y2+ 2y + 2 30) 10a + 10b + xa + xb Answers Scrambled Look for the answer you have & lightly cross it out. prime 6ab2( 4b2+ 2b - 3) 2k2(2 + 9k - 3k2) 4a2b2(2a2b2- 7ab + 1) 7ab(b4 - 8) 5k( 5k2+ 4k + 2) 6k2
3
2
3y
y + 3