# mathematical_methods-two - Mathematical Tools for Physics...

mathematical_methods-two
Download Document
Showing pages : 1 - 5 of 431
This preview has blurred sections. Sign up to view the full version!
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mathematical Tools for Physics by James Nearing Physics Department University of Miami jnearing@miami.edu www.physics.miami.edu/nearing/mathmethods/ Copyright 2003, James Nearing Permission to copy for individual or classroom use is granted. QA 37.2 Rev. Nov, 2006 Contents Introduction . . . . . . . . . . . . . . iii Bibliography . . . . . . . . . . . . . . . v 1 Basic Stu . . . . . . . . . . . . . . . 1 Trigonometry Parametric Dierentiation Gaussian Integrals erf and Gamma Dierentiating Integrals Polar Coordinates Sketching Graphs 2 Innite Series . . . . . . . . . . . . . 22 The Basics Deriving Taylor Series Convergence Series of Series Power series, two variables Stirling's Approximation Useful Tricks Diraction Checking Results 3 Complex Algebra . . . . . . . . . . . . 48 Complex Numbers Some Functions Applications of Euler's Formula Series of cosines Logarithms Mapping 4 Dierential Equations . . . . . . . . . . 62 Linear Constant-Coecient Forced Oscillations Series Solutions Some General Methods Trigonometry via ODE's Green's Functions Separation of Variables Circuits Simultaneous Equations Simultaneous ODE's Legendre's Equation 5 Fourier Series . . . . . . . . . . . . . 92 Examples Computing Fourier Series Choice of Basis Musical Notes Periodically Forced ODE's Return to Parseval Gibbs Phenomenon 6 Vector Spaces . . . . . . . . . . . . . 114 The Underlying Idea Axioms Examples of Vector Spaces Linear Independence Norms Scalar Product Bases and Scalar Products Gram-Schmidt Orthogonalization Cauchy-Schwartz inequality Innite Dimensions 7 Operators and Matrices . . . . . . . . . 133 The Idea of an Operator Denition of an Operator Examples of Operators Matrix Multiplication Inverses Areas, Volumes, Determinants Matrices as Operators Eigenvalues and Eigenvectors Change of Basis Summation Convention Can you Diagonalize a Matrix? Eigenvalues and Google Special Operators 8 Multivariable Calculus . . . . . . . . . 168 Partial Derivatives Chain Rule Dierentials Geometric Interpretation Gradient Electrostatics Plane Polar Coordinates Cylindrical, Spherical Coordinates Vectors: Cylindrical, Spherical Bases Gradient in other Coordinates Maxima, Minima, Saddles Lagrange Multipliers Solid Angle i Rainbow 3D Visualization 9 Vector Calculus 1 . . . . . . . . . . . 202 Fluid Flow Vector Derivatives Computing the divergence Integral Representation of Curl The Gradient Shorter Cut for div and curl Identities for Vector Operators Applications to Gravity Gravitational Potential Index Notation More Complicated Potentials 10 Partial Dierential Equations . . . . . . 231 The Heat Equation Separation of Variables Oscillating Temperatures Spatial Temperature Distributions Specied Heat Flow Electrostatics Cylindrical Coordinates 11 Numerical Analysis . . . . . . . . . . . 256 Interpolation Solving equations Dierentiation Integration Dierential Equations Fitting of Data Euclidean Fit Dierentiating noisy data Partial Dierential Equations...
View Full Document