{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 4 - Contents CHAPTER 4 The Chain Rule Derivatives by the...

This preview shows pages 1–3. Sign up to view the full content.

CHAPTER 4 4.1 4.2 4.3 4.4 CHAPTER 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 CHAPTER 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 CHAPTER 7 7.1 7.2 7.3 7.4 7.5 CHAPTER 8 8.1 8.2 8.3 8.4 8.5 Contents The Chain Rule Derivatives by the Chain Rule Implicit Differentiation and Related Rates Inverse Functions and Their Derivatives Inverses of Trigonometric Functions Integrals The Idea of the Integral 177 Antiderivatives 182 Summation vs. Integration 187 Indefinite Integrals and Substitutions 195 The Definite Integral 201 Properties of the Integral and the Average Value 206 The Fundamental Theorem and Its Consequences 213 Numerical Integration 220 Exponentials and Logarithms An Overview 228 The Exponential ex 236 Growth and Decay in Science and Economics 242 Logarithms 252 Separable Equations Including the Logistic Equation 259 Powers Instead of Exponentials 267 Hyperbolic Functions 277 Techniques of Integration Integration by Parts Trigonometric Integrals Trigonometric Substitutions Partial Fractions Improper Integrals Applications of the Integral Areas and Volumes by Slices Length of a Plane Curve Area of a Surface of Revolution Probability and Calculus Masses and Moments 8.6 Force, Work, and Energy

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 C H A P T E R 4 Derivatives by the Chain Rule 1 4.1 The Chain Rule You remember that the derivative of f(x)g(x) is not (df/dx)(dg/dx). The derivative of sin x times x2 is not cos x times 2x. The product rule gave two terms, not one term. But there is another way of combining the sine function f and the squaring function g into a single function. The derivative of that new function does involve the cosine times 2x (but with a certain twist). We will first explain the new function, and then find the "chain rule" for its derivative. May I say here that the chain rule is important. It is easy to learn, and you will use it often. I see it as the third basic way to find derivatives of new functions from derivatives of old functions. (So far the old functions are xn, sin x, and cos x. Still ahead are ex and log x.) When f and g are added and multiplied, derivatives come from the sum rule and product rule. This section combines f and g in a third way. The new function is sin(x2)-the sine of x2. It is created out of the two original functions: if x = 3 then x2 = 9 and sin(x2) = sin 9. There is a "chain" of functions, combining sin x and x2 into the composite function sin(x2). You start with x, then find g(x), then Jindf (g(x)): The squaring function gives y = x2. This is g(x). The sine function produces z = sin y = sin(x2).This is f(g(x)). The "inside function" g(x) gives y. This is the input to the "outside function" f(y). That is called composition. It starts with x and ends with z. The composite function is sometimes written fog (the circle shows the difference from an ordinary product fg). More often you will see f(g(x)): Other examples are cos 2x and ( 2 ~ ) ~ , with g = 2x.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 24

4 - Contents CHAPTER 4 The Chain Rule Derivatives by the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online