{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# numas - Numerical Methods Course Notes Version 0.11(UCSD...

This preview shows pages 1–7. Sign up to view the full content.

Numerical Methods Course Notes Version 0.11 (UCSD Math 174, Fall 2004) Steven E. Pav 1 October 13, 2005 1 Department of Mathematics, MC0112, University of California at San Diego, La Jolla, CA 92093-0112. This document is Copyright c 2004 Steven E. Pav. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front- Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU Free Documentation License”.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2
Preface These notes were originally prepared during Fall quarter 2003 for UCSD Math 174, Numerical Methods. In writing these notes, it was not my intention to add to the glut of Numerical Analysis texts; they were designed to complement the course text, Numerical Mathematics and Computing, Fourth edition, by Cheney and Kincaid [7]. As such, these notes follow the conventions of that text fairly closely. If you are at all serious about pursuing study of Numerical Analysis, you should consider acquiring that text, or any one of a number of other fine texts by e.g. , Epperson, Hamming, etc. [3, 4, 5]. 3.1 3.2 8.4 3.3 1.4 3.4 1.1 4.2 7.1 10.1 4.3 5.1 5.2 7.2 8.3 8.2 9.1 9.2 9.3 10.2 10.3 Figure 1: The chapter dependency of this text, though some dependencies are weak. Special thanks go to the students of Math 174, 2003–2004, who suffered through early versions of these notes, which were riddled with (more) errors. Revision History 0.0 Transcription of course notes for Math 174, Fall 2003. 0.1 As used in Math 174, Fall 2004. 0.11 Added material on functional analysis and Orthogonal Least Squares. Todo More homework questions and example problems. Chapter on optimization. Chapters on basic finite difference and finite element methods? Section on root finding for functions of more than one variable. i

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
ii
Contents Preface i 1 Introduction 1 1.1 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Loss of Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Vector Spaces, Inner Products, Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.3 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 A “Crash” Course in octave/Matlab 13 2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Useful Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Programming and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Logical Forks and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Solving Linear Systems 25 3.1 Gaussian Elimination with Na¨ ıve Pivoting . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Elementary Row Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Algorithm Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.3 Algorithm Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Pivoting Strategies for Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Scaled Partial Pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Another Example and A Real Algorithm . . . . . . . . . . . . . . . . . . . . . 32 3.3 LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Using LU Factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.3 Some Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.4 Computing Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Iterative Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 An Operation Count for Gaussian Elimination . . . . . . . . . . . . . . . . . 37 iii

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
iv CONTENTS 3.4.2 Dividing by Multiplying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.3 Impossible Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.4 Richardson Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.5 Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.6 Gauss Seidel Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.7 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.8 A Free Lunch? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Finding Roots 49 4.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern