ISM_T11_C12_A - CHAPTER 12 VECTORS AND THE GEOMETRY OF...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 1. The line through the point ( ) parallel to the z-axis #ß$ß! 2. The line through the point ( 1 0 ) parallel to the y-axis ±ßß! 3. The x-axis 4. The line through the point (1 ) parallel to the z-axis ß!ß! 5. The circle x y 4 in the xy-plane ## ²œ 6. The circle x y 4 in the plane z = 2 ± 7. The circle x z 4 in the xz-plane 8. The circle y z 1 in the yz-plane 9. The circle y z 1 in the yz-plane 10. The circle x z 9 in the plane y 4 œ ± 11. The circle x y 16 in the xy-plane 12. The circle x z 3 in the xz-plane 13. (a) The first quadrant of the xy-plane (b) The fourth quadrant of the xy-plane 14. (a) The slab bounded by the planes x 0 and x 1 œœ (b) The square column bounded by the planes x 0, x 1, y 0, y 1 œœœœ (c) The unit cube in the first octant having one vertex at the origin 15. (a) The solid ball of radius 1 centered at the origin (b) The exterior of the sphere of radius 1 centered at the origin 16. (a) The circumference and interior of the circle x y 1 in the xy-plane (b) The circumference and interior of the circle x y 1 in the plane z 3 œ (c) A solid cylindrical column of radius 1 whose axis is the z-axis 17. (a) The closed upper hemisphere of radius 1 centered at the origin (b) The solid upper hemisphere of radius 1 centered at the origin 18. (a) The line y x in the xy-plane œ (b) The plane y x consisting of all points of the form (x x z) œß ß
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
780 Chapter 12 Vectors and the Geometry of Space 19. (a) x 3 (b) y 1 (c) z 2 œœ ± œ ± 20. (a) x 3 (b) y 1 (c) z 2 ± œ 21. (a) z 1 (b) x 3 (c) y 1 œœœ ± 22. (a) x y 4, z 0 (b) y z 4, x 0 (c) x z 4, y 0 ## ²œ œ 23. (a) x (y 2) 4, z 0 (b) (y 2) z 4, x 0 (c) x z 4, y 2 # # ²± œ œ ± ²œ œ 24. (a) (x 3) (y 4) 1, z 1 (b) (y 4) (z 1) 1, x 3 ²² ±œ œ ±² œ ± (c) (x 3) (z 1) 1, y 4 œ 25. (a) y 3, z 1 (b) x 1, z 1 (c) x 1, y 3 ± ± 26. x y z x (y 2) z x y z x (y 2) y y 4y 4 y 1 ÈÈ ### # #### ²²œ ²± ² Ê ²²œ²± ² Ê œ±²Êœ 27. x y z 25, z 3 x y 16 in the plane z 3 ²²œ œÊ²œ œ 28. x y (z 1) 4 and x y (z 1) 4 x y (z 1) x y (z 1) z 0, x y 3 # # # ²²± œ ²²² œÊ ²²± œ²²² Êœ ²œ 29. 0 z 1 30. 0 x 2, 0 y 2, 0 z 2 ŸŸ ŸŸ ŸŸ ŸŸ 31. z 0 32. z 1 x y Ÿœ ± ± È 33. (a) (x 1) (y 1) (z 1) 1 (b) (x 1) (y 1) (z 1) 1 ±³ ±´ 34. 1 x y z 4 Ÿ²²Ÿ 35. P P 3 1 3 1 0 1 9 3 k kab ab É È "# œ ± ²± ²± œ œ 36. P P 2 1 5 1 0 5 50 5 2 k É È È œ ² ²± ²± œ œ 37. P P 4 1 2 4 7 5 49 7 k a b É È # œ± ² ± ± ² ± œ œ 38. P P 2 3 3 4 4 5 3 k É È œ ± ²± ²± œ 39. P P 2 0 2 0 2 0 3 4 2 3 k k a b É ² ± ± ² ± ± œ œ 40. P P 0 5 0 3 0 2 38 k É È œ ± ²± ²² œ 41. center ( 2 0 2), radius 2 2 42. center , radius ± ß ß ± ß± ß± È ˆ‰ """ # È 21 43. center 2 2 2 , radius 2 44. center , radius Š‹ ÈÈ È È ßß ± ! ß ± ß "" 33 3 29 È
Background image of page 2
Section 12.2 Vectors 781 45. (x 1) (y 2) ( 3) 14 46. x (y 1) (z 5) 4 ±² D ±œ ² ²² ### 47. (x 2) y z 3 48. x (y 7) z 49 ² ²²œ ²² ²œ # ## 49. x y z 4x 4z 0 x 4x 4 y z 4z 4 4 4 # # # ²²²±œÊ ²²²² ±²œ² ab (x 2) (y 0) (z 2) 8 the center is at ( 2 0 2) and the radius is 8 ʲ² Ê ± ß ß # Š‹ ÈÈ 50. x y z 6y 8z 0 x y 6y 9 z 8z 16 9 16 (x 0) (y 3) (z 4) 5 # # # # # ²²±²œÊ² ±²² ²² œ² ʱ ²± ²² œ a b
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This homework help was uploaded on 09/23/2007 for the course MATH 1910 taught by Professor Berman during the Spring '07 term at Cornell University (Engineering School).

Page1 / 22

ISM_T11_C12_A - CHAPTER 12 VECTORS AND THE GEOMETRY OF...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online