chp%253A10.1007%252F978-3-540-74471-9_40[1].pdf -...

This preview shows page 1 - 2 out of 4 pages.

Carmen Mueller-Karger, Sara Wong, Alexandra La Cruz (Eds.): CLAIB 2007, IFMBE Proceedings 18, pp. 171–174, 2007 © Springer-Verlag Berlin Heidelberg 2007 Aplicación de la Transformada Wavelet para el desarrollo de un método computacionalmente simple de detección del final de la onda T. P.V. Rivera Farina 1 , J. Pérez Turiel 2 , A. Herreros López 2 1 Fundación CARTIF/División de Ingeniería Biomédica, Valladolid, España. 2 Universidad de Valladolid/Departamento de Ingeniería de Sistemas y Automática, Valladolid, España. Abstract — Diabetes Mellitus is a chronic metabolic disease characterized by hyperglycemia and associated with microvas- cular (ie, retinal, renal), macrovascular (ie, coronary, periph- eral vascular), and neuropathic (ie, autonomic, peripheral) complications. The World Health Organization estimates that 171 million people worldwide suffer from diabetes. This num- ber is expected to double by the year 2030. Much of this in- crease will occur in developing countries and will be due to population growth, aging, unhealthful diets, obesity, and sed- entary lifestyles. Ischemic cardiopathy is one of the early manifestations of this disease. It is said to cause QT interval prolongation, thus providing a simple way to detect it or at least suspect of its presence. The method we propose here, even if it's not the most accu- rate to define the boundaries of the T-wave, manages to detect it with a dispersion comparable to other “state of the art” methods. It’s main advantage is that it is computationally lighter and easy to adapt to real time processing in order to implement it on medical devices. That way a doctor wouldn't need to go trough hours of data revision but just trust what the device has detected. Preliminary results are promising, with mean values ap- proaching those provided by other methods and with slightly smaller dispersions. This opens the door to a method that’s computationally light and reliable enough to unattended wave detection and to the development of a reliable method to detect ischemic cardiopathy in its early stages. Keywords — QT interval, T-wave, Wave detection, Wavelet transform, Diabetes. I. I NTRODUCCIÓN La diabetes mellitus es una enfermedad de alto impacto en la población que aqueja a más de 171 millones [1] de personas de todo el mundo . Se estima que en 2006 casi un 5,6% de la población española la padece [2]; Se estima además, que por cada paciente diagnosticado existe uno que aún no lo ha sido. Entre las múltiples manifestaciones de la diabetes, se pueden encontrar severos daños en el sistema nervioso. Estos daños vienen en forma de degeneración nerviosa, lo que provoca que el cuerpo pierda su capacidad de reacción [3], perdiéndose gradualmente la respuesta del sistema nervioso autónomo (SNA).

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture