Math 1A - Fall 1997 - Bergman - Final

# Math 1A - Fall 1997 - Bergman - Final - SUN 14:13 FAX...

• Test Prep
• 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 11/11/2001 SUN 14:13 FAX 6434330 MOFFITT LIBRARY 001 George M. Bergman F0,” 1997, Math HlA 18 December, 1997 61 Evans Hall Final Exam 12:30—3z30 PM 1. (30 points, 5 points apiece) Compute each of the following. (a) d/dx (ln(ln x)). (b) limx_m/4 ((tan x) —1)/((coszx) — 1/1). (c) limx_>0— (tanx)/((coszx) —l). (d) An expression for the “telescoping sum” Elli"? f(i+1) —f(1') in which cancelling summands have been dropped. (6) limn_)+m (2;;1 10’/”)/n. (t) j): cos (x2/3) dx. 2. (18 points) The Riemann integral of a function f was deﬁned by the formula I:f(x)dx = ilm1|P[|__>0 221:1 f(xi*)Axl-. (a) (9 points) In the above formula, P denotes a partition of [a, b], denotes its norm, and the Axi denote certain related numbers. Deﬁne each of these: A partition P of [42.19] means Given such a partition P, we deﬁne Axi = For such apartition P, its norm [|P|| means (b) (9 points) Now complete the sentence below to give a precise (“s-6”) deﬁnition of the limit expression in the above deﬁnition of the Riemann integral. (You do not, of course, have to explain Z-notation. On the other hand, your deﬁnition should make clear what the symbol x5“ refers to.) If f is a function on an interval [a, b], and L is a real number, we write . n I f(xfk)Axi = L 1f 11/11/2001 SUN 14:13 FAX 6434330 MOFFITT LIBRARY 002 3. (15 points) (a) (5 points) Suppose f is a continuous function on (0,+oo), and a and b are positive real numbers such that f(ax) bf(x) for all x > 0. Show that if F is any antiderivative of f, there will exist a constant k such that F(ax) = abF(x) + k for all x>0. II (b) (5 points) Letting f(x) = l/xz, and a be an arbitrary positive real number, give a value of b that makes the equation ﬂax) : bf(x) hold. Give the general antidcrivativc F of this function f, and for each such antiderivative ﬁnd a constant k satisfying the equation given in (a). (c) (5 points) Do the same for f(x) = l/x. 4.. (20 points, 5 points apiece) Give an example of each of the following. You do not have to prove that your examples have the properties asked for. When asked to give a function with a given domain [(1.19], you may give a function with larger natural domain, understanding it to be restricted to the domain asked for. (a) A function f on [0,1] having no maximum value. (b) A continuous function f on [1,101 which has a local maximum that is not an absolute maximum. (c) A continuous function f on [0,5] which is concave upward on [0, 3] and concave downward on [3, 5]. (d) A one—to-one function f with domain [0,1] and range [3,5], and the function g inverse to f. b 5. (7 points) Given that d/dx tanx = 3602):, get a formula for _[ seczx dx, and state (1 conditions on a and b under which your formula is valid. (For full credit, you should give the most general such conditions.) 6. (10 points) In the last reading, we deﬁned the exponential function exp as the inverse of the natural logarithm function In. Using this deﬁnition, prove the identity exp(x +y) = exp(x) exp(y). The proof uses one or more properties of the natural logarithm function; state explicitly the properties you use. (You are not asked to prove those properties of the logarithm, or to say anything about how the logarithm function is deﬁned.) ...
View Full Document

• Spring '08
• WILKENING

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern