This** preview**
has intentionally

**sections.**

*blurred***to view the full version.**

*Sign up*
**Unformatted text preview: **w0 = pi; % fundamental frequency T0 = 2*pi/w0; % fundamental period % calculate positive coefficients M = 15; % number of terms ind = 1; for mm = -M:M if mm ~= 0 X(ind) = (exp(-j*mm*pi)/2); % coefficients X(ind) = X(ind)*((1/(mm*pi)^2)-(1/(j*mm*pi))); X(ind) = X(ind)-1/(2*(mm*pi)^2); elseif mm == 0 X(ind) = 0.25; end ind = ind + 1; end % create signal t = linspace(-2*T0,2*T0,600); % time vector x = zeros(size(t)); ind = 1; for mm = -M:M x = x + X(ind)*exp(j*mm*w0*t); ind = ind + 1; end figure(1) plot(t,x,'k'); xlabel('time') title('Problem 7.3.7') Figure P7.3.7...

View
Full Document

- Spring '08
- DJStilwell
- Fourier Series, #, partial sums, 2 $, 2 4 M