BME
Homework3

Homework3 - BME303 Homework 3 Due date Last Name Kanungo...

• Homework Help
• 5

This preview shows pages 1–2. Sign up to view the full content.

BME303 Homework 3 Due date 2/20/2007 Last Name: Kanungo First Name: Anil . Problem 3.1 [3+ 3 + 3 + 3+ 3 = 12] Find the equivalent IEEE 754 floating point representation for the decimal numbers below. a) -.132 1 01111100 00001110010101100000 b) 15.36 0 10000010 11101011100001010001111 c) 4576 0 10001011 00011110000000000000000 d) -1143.36 1 10001001 00011101110101110000101 Problem 3.2 [2+ 2 + 2 + 2 = 8] Problem 2.50 from book Chapter 2 a) 0101 0100 0111 1000 AND 1111 1101 0110 1000 = 0101 0100 0110 1000 = x5468 b) 1010 1011 1100 1101 OR 0001 0010 0011 0100 = 1011 1011 1111 1101 = xBBFD c) 1101 1110 1111 1010 AND 0000 0000 0000 0000 = 0000 0000 0000 0000 = x0000 d) 0000 0000 1111 1111 XOR 0011 0010 0101 1100 = 0011 0010 1010 0011 = x32A3 Problem 3.3 [5+ 5 = 10] The inverse or complement of any Boolean expression can easily be found by successively  applying the following theorems, which are frequently referred to as DeMorgan’s laws: ( X + Y ) ’ = X ’ Y ’  (Eq. # 1) ( X . Y ) ’ = X ’ + Y ’ (Eq. # 2) a) Verify those equations using the truth table: X Y X ‘ Y ‘ X + Y (X+ Y) ‘ X’.Y’ X.Y (X.Y)’ X’ + Y’ 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 b) Using DeMorgan’s laws proved in part a, show algebraically that:  1- [(A’ +B).C’]’ = A.B’ + C

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.
• Spring '08
• Ren
• Boolean Algebra, Anil

{[ snackBarMessage ]}

What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern