Lecture 02 - Image Filters - CP Fall 2019.pptx - Pixels and...

  • No School
  • AA 1
  • 71

This preview shows page 1 - 17 out of 71 pages.

Pixels and Image Filtering Computational Photography Derek Hoiem 08/30/19
Image of page 1

Subscribe to view the full document.

Administrative stuf Any questions? Next week reminders Labor day on Monday Derek is out Wed. Jae will teach. Recording from earlier year available. Yuan will give tutorial Thurs at 5pm in DCL 1320
Image of page 2
Pixels and Image Filtering Computational Photography Derek Hoiem
Image of page 3

Subscribe to view the full document.

Today’s Class: Pixels and Linear Filters What is a pixel? How is an image represented? What is image filtering and how do we do it? Introduce Project 1: Hybrid Images
Image of page 4
Next three classes Image filters in spatial domain Smoothing, sharpening, measuring texture Image filters in the frequency domain Denoising, sampling, image compression Templates and Image Pyramids Detection, coarse-to-fine registration
Image of page 5

Subscribe to view the full document.

Image Formation
Image of page 6
Digital camera Digital camera replaces film with a sensor array Each cell in the array is light-sensitive diode that converts photons to electrons http ://electronics.howstufworks.com/digital-camera.htm
Image of page 7

Subscribe to view the full document.

Sensor Array CCD sensor
Image of page 8
The raster image (pixel matrix) Photo by Phil Greenspun used with permission
Image of page 9

Subscribe to view the full document.

The raster image (pixel matrix) 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93
Image of page 10
Perception of Intensity from Ted Adelson
Image of page 11

Subscribe to view the full document.

Perception of Intensity from Ted Adelson
Image of page 12
Digital Color Images
Image of page 13

Subscribe to view the full document.

Color Image R G B
Image of page 14
Images in Python im = cv2.imread(filename) # read image im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) # order channels as RGB im = im / 255 # values range from 0 to 1 RGB image im is a H x W x 3 matrix (numpy.ndarray) im[0,0,0] = top-left pixel value in R-channel im[y, x, c] = y+1 pixels down, x+1 pixels to right in the c th channel im[H-1, W-1, 2] = bottom-right pixel in B-channel 0.97 0.93 0.92 0.99 0.92 0.81 0.95 0.91 0.41 0.49 0.91 0.92 0.87 0.90 0.97 0.95 0.88 0.89 0.79 0.85 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99 0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91 0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92 0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95 0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85 0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33 0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74 0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93 0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99 0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97 0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93 R G B row column
Image of page 15

Subscribe to view the full document.

Image filtering Image filtering: compute function of local neighborhood at each position Really important! Enhance images Denoise, resize, increase contrast, etc.
Image of page 16
Image of page 17
  • Fall '19

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Ask Expert Tutors You can ask You can ask ( soon) You can ask (will expire )
Answers in as fast as 15 minutes