NUPUS_2007-01_online.pdf - Universität Stuttgart International Research Training Group GRK 1398/1 “Non-linearities and upscaling in porous media“

NUPUS_2007-01_online.pdf - Universität Stuttgart...

This preview shows page 1 - 7 out of 59 pages.

Universität Stuttgart International Research Training Group GRK 1398/1 “Non-linearities and upscaling in porous media“ Yufei Cao Birgitte Eikemo Rainer Helmig Fractional Flow Formulation for Two-phase Flow in Porous Media Preprint 2007/1
Image of page 1

Subscribe to view the full document.

GRK 1398/1 - Geschäftsstelle - Pfaffenwaldring 61 70569 Stuttgart Telefon: 0711/685-60399 Telefax: 0711/685-60430 E-Mail: [email protected]
Image of page 2
Fractional Flow Formulation for Two-phase Flow in Porous Media Yufei Cao School of Mathematics and System Science, Shandong University, Jinan 250100, China IWS, Department of Hydromechanics and Modeling of Hydrosystems, Universit¨at Stuttgart, Germany Birgitte Eikemo Dept. Mathematics, University of Bergen, Johs. Brunsgt. 12, N-5008 Bergen, Norway Rainer Helmig IWS, Department of Hydromechanics and Modeling of Hydrosystems, Universit¨at Stuttgart, Germany Abstract: This paper focuses on the fractional flow formulation for two-phase flow in porous media and its applications. The IMPES (IMplicit-Pressure- Explicit-Saturation) concept is introduced for the fractional flow formulation using a finite volume element (FVE) method. Based on the differences between the fractional flow (FF) and fully coupled (FC) formulation, more adaptive pos- sibilities are proposed for the FF system. Numerical results and CPU times for both formulations are given and compared to prove that the FF formula- tion is more efficient for the solution of advection-dominated two-phase flow problems, and the numerical simulation for one of the adaptive possibilities is also shown to investigate its feasibility. Furthermore, the FF formulation is com- bined with time-of-flight (TOF) calculation using a discontinuous Galerkin (dG) method which gives another application of the FF formulation. Numerical sim- ulations for two real-life flow problems (single-phase models) are presented. Keywords: fractional flow formulation, fully coupled formulation, two-phase flow, finite volume element method, adaptive method, discontinuous Galerkin method, time-of-flight 2007
Image of page 3

Subscribe to view the full document.

Image of page 4
Contents Notation IV 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Goal and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Physical background and mathematical modeling 4 2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Matrix and fluid parameters . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Constitutive relationships . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Mathematical formulations for two-phase flow . . . . . . . . . . . . . . . . . . 9 2.2.1 Fully coupled formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Fractional flow formulation . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Adaptive methods 16 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Adaptive possibilities for fractional flow formulation . . . . . . . . . . . . . . 17 4 Numerical Examples 22 4.1 1D example: Buckley-Leverett problem . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 Comparative study of the results . . . . . . . . . . . . . . . . . . . . . . 24 4.2 2D example: five-spot waterflood problem . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Comparative study of the results . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Final remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Application to time-of-flight simulation 32 5.1 Time-of-flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 Discretization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.1 Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.2 Case II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4 Final remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 Summary 43
Image of page 5

Subscribe to view the full document.

List of Figures 2.1 From microscale to macroscale . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Contact angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 capillary pressure-saturation ( p c - S w ) relation after Brooks-Corey . . . . . . . . 8 2.4
Image of page 6
Image of page 7
  • Fall '15

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Ask Expert Tutors You can ask You can ask ( soon) You can ask (will expire )
Answers in as fast as 15 minutes