Example C.6.
Consider the fillable disk
A
2
M
0
1
1
D
=
(C.25)
Using Equation (3.45) and Lemma 3.17 we obtain
℧
D
=
integraldisplay
m
∈M
T
[0]
(
m
⊠
D
A
)
⊠
m
=
integraldisplay
m
∈M
integraldisplay
a
∈A
a
∨
.m
⊠
D.
[3]
a
⊠
m
∼
=
integraldisplay
m
∈M
integraldisplay
a
∈A
a
∨
.m
⊠
a
⊠
m
∼
=
integraldisplay
m
∈M
integraldisplay
a
∈A
m
⊠
a
⊠
a.m.
(C.26)
We have actually already encountered the defect one-manifold that constitutes the outer bound-
ary of the disk
D
: it is the defect circle
I
ւ
κ
(
M
) in (5.14) with framing index
κ
= 0. Similarly
we obtain the following list of defect one-manifolds and silent objects for all other transparent
disks with outer boundaries given by one of the circles (5.14):
I
ր
κ
(
M
) :
℧
=
integraldisplay
m
∈M
integraldisplay
a
∈A
m
⊠
m.a
[
κ
−
1]
⊠
a
=
integraldisplay
m
∈M
integraldisplay
a
∈A
m
⊠
m.a
⊠
[
κ
−
1]
a,
I
ւ
−
κ
(
M
) :
℧
=
integraldisplay
m
∈M
integraldisplay
a
∈A
m
⊠
a
⊠
a
[
κ
]
.m,
I
տ
κ
(
M
) :
℧
=
integraldisplay
m
∈M
integraldisplay
a
∈A
m
⊠
a
⊠
[
κ
−
1]
a.m,
I
ց
−
κ
(
M
) :

You've reached the end of your free preview.
Want to read the whole page?
- Fall '17