436EX1F04 - MATH 436 - Exam 1 SHOW ALL WORK x NAME: _ 1)...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
 MATH 436 - Exam 1                NAME: _________________________   SHOW ALL WORK 1) Let y = f(x) = x cos(.1  x e ) on the interval [0,  π ]. a) Find the 3rd Taylor polynomial P ) ( 3 x to f(x) centered at x = 2, and graph both f(x) and P ) ( 3 x on this interval. b) What is the total absolute error in this approximation on this interval? c) Graphically find the "largest" interval containing x = 2 so that this Taylor polynomial will  approximate f(x) with pointwise absolute error of at most .05. 2) Using the remainder formula, find the "smallest" order n so that the Taylor polynomial Pfor f(x) =  sin(2 x) centered at x = 0 will approximate f(x) on the interval [0, 2  π ] with pointwise absolute error in  this approximation of at most .03.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
3) Give some of the advantages and disadvantages of using the methods of Newton 1st order, 
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/02/2008 for the course MATH 436 taught by Professor Ken during the Spring '08 term at Eastern Michigan University.

Page1 / 4

436EX1F04 - MATH 436 - Exam 1 SHOW ALL WORK x NAME: _ 1)...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online