This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Math 1B, Final Exmnination
Section 1, 11—125mm, N.Reshetikhin, May 19, 2003 Student's Name: TA’s name:
Student’s i.d. number: 1.10 puts Evaluate the integral 1
/ 33v 1 + Igdm
‘ o 09/23/2003 15:46 FAX 510 642 9454 .002 2.10 puts Evaluate the integral [:62 111(1 + 1:)dx 09/23/2003 15:46 FAX 510 642 9454 .003 3.15 pnts Indicate which of the following statements are true and which are
false. Do not show your work.
2: 0° 1 °° sin2 .
1. f 2 d3: converges by comparison test w1th / Edam
1 55 1 m sin2 °° 1
2. f xix diverges by comparison test with / —dz.
1 5'3 1 x 2
dm , . .
3, ./0‘ main: IS a convergent unproper integral. m
1
4. f m—Eda: is a divergent improper integral.
0 00 8—1:
5. / air is a. convergent improper integral.
0 J57; 09/23/2003 15:47 FAX 510 642 9454 .004 4.15 puts Find the radius and the interval of convergence of the power series 2 ln(n) as" 09/23/2003 15:47 FAX 510 642 9454 5.15 puts State Whether the following series is absolutely convergent, condi—
tionally convergent, or divergent. Do not show your work. m005 09/23/2003 15:47 FAX 510 642 9454 .006 6.15 puts For each'statement indicate Whether it isltrue or false. Do not
show your work. DC EX)
1. If 2 c4,1 converges, then Z(—1)”cn also converges. n=1 n:1 DO 2. If f(:1:) > 0 is monotonically decreasing and f(.r)d$ < 00 then
1000 00
Z ﬁn) converges.
n=1 3. If the sequence {an} converges and the sequence {bu} diverges then
{an + 6”} diverges. 4. If the sequence {an} converges and and the sequence {bu} diverges then
{anbn} diverges. 5. If 2 (1,151” converges and Z 011(76)“ diverges, then 27120 0.18” diverges.
n20 n20 09/23/2003 15:48 FAX 510 642 9454 .007 7.15 pnts Indicate whether each of the following series converges absolutely,
converges conditionally, or diverges. Do not Show your work. Do 11,
1. —
Z(n+1)s 2. i=2 ——(n + 1)3 'n. 1 0° 2 3. Z(—1)”(n:—1)3 n: 00 1 n2 4 —1 “sin —
7;; ) (71) (71+ l)3
00 1 n4 5 Z(_1)n51n(;) (n+ U3 09/23/2003 15:48 FAX 510 642 9454 .008 8.15 pnts Find the general solution to the differential equation a:y’—y:m. 09/23/2003 15:48 FAX 510 642 9454 .009 9.15 pnts Solve the initial~value problem d
—y=l+:c2+y+332y, y(0)=0.
dz: 09/23/2003 15:49 FAX 510 642 9454 .010 10.15 pnts Find the solution to the initialvalue problem y”—y:em, y(0)=0, y’(0):1. 10 09/23/2003 15:49 FAX 510 642 9454 .011 11.15 pnts Find the general solution to the diﬂ'erential equation: y”—2y'—3y=a:. 11 09/23/2003 15:49 FAX 510 642 9454 .012 12.20 puts Find the power series solution to the differential equation: y” — my = 0, y(0) = O, y'(0) : 1. 12 ...
View
Full Document
 Spring '08
 WILKENING
 Math, Calculus

Click to edit the document details