CS 205A hw3

# Scientific Computing

This preview shows pages 1–2. Sign up to view the full content.

CS205 Homework #3 Problem 1 Consider an n × n matrix A . 1. Show that if A has distinct eigenvalues all the corresponding eigenvectors are linearly independent. 2. Show that if A has a full set of eigenvectors (i.e. any eigenvalue λ with multiplicity k has k corresponding linearly independent eigenvectors), it can be written as A = QΛQ - 1 where Λ is a diagonal matrix of A ’s eigenvalues and Q ’s columns are A ’s eigenvectors. Hint: show that AQ = and that Q is invertible. 3. If A is symmetric show that any two eigenvectors corresponding to different eigenvalues are orthogonal. 4. If A is symmetric show that it has a full set of eigenvectors. Hint: If ( λ , q ) is an eigenvalue, eigenvector ( q normalized) pair and λ is of multiplicity k > 1, show that A - λ qq T has an eigenvalue of λ with multiplicity k - 1. To show that consider the Householder matrix H such that Hq = e 1 and note that HAH - 1 = HAH and A are similar.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern