cDlbEQz1PQk.pdf - MITOCW | watch?v=cDlbEQz1PQk The following content is provided under a Creative Commons license Your support will help MIT

cDlbEQz1PQk.pdf - MITOCW | watch?v=cDlbEQz1PQk The...

This preview shows page 1 - 3 out of 25 pages.

MITOCW | watch?v=cDlbEQz1PQk The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at PROFESSOR: All right. Let's see. We're going to start today with a wrap up of our discussion of univariate time series analysis. And last time we went through the world representation theorem, which applies to covarient stationary processes, a very powerful theorem. And implementations of the covariant stationary processor with ARMA models. And we discussed estimation of those models with maximum likelihood. And here in this slide i just wanted to highlight how when we estimate models with maximum likelihood we need to have an assumption of a probability distribution for what's random, and in the ARMA structure we consider the simple case where the innovations, the eta t, are normally distributed white noise. So they're independent and identically distributed normal random variables. And the likelihood function can be maximized at the maximum likelihood parameters. And it's simple to implement the limited information maximum likelihood where one conditions on the first few observations in the time series. If you look at the likelihood structure for ARMA models, the density of an outcome at a given time point depends on lags of that dependent variable. So if those are unavailable, then that can be a problem. One can implement limited information maximum likelihood where you're just conditioning on those initial values, or there are full information maximum likelihood methods that you can apply as well. Generally though the limited information case is what's applied. Then the issue is model selection. And with model selection the issues that arise with time series are issues that arise in fitting any kind of statistical model. Ordinarily one will have multiple candidates for the model you want to fit to data. And the issue 1
Image of page 1
is how do you judge which ones are better than others. Why would you prefer one over the other? And if we're considering a collection of different ARMA models then we could say, fit all ARMA models of order pq with p and q varying over some range. P from 0 up to p max, q from q up to q max. And evaluate those pq different models. And if we consider sigma tilda squared of pq being the mle of the error variance. Then there are these model selection criteria that are very popular. Akaike information criterion, and Bayes information criterion, and Hannan-Quinn. Now these criteria all have the same term, log of the mle of the error variance. So these criteria don't vary at all with that. They just vary with this second term, but let's focus first on the AIC criterion.
Image of page 2
Image of page 3

You've reached the end of your free preview.

Want to read all 25 pages?

  • Spring '17
  • Jim Angel

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern

Stuck? We have tutors online 24/7 who can help you get unstuck.
A+ icon
Ask Expert Tutors You can ask You can ask You can ask (will expire )
Answers in as fast as 15 minutes
A+ icon
Ask Expert Tutors