hw3_solutions - Homework 3, Solution Sketches Math 471,...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework 3, Solution Sketches Math 471, Fall 2007 Assigned: Friday, September 24, 2007 Due: Friday, October 1, 2007 (1) (Newton versus Secant) Bradie, p. 113, #12. The sequence of iterates generated by the secant method follows. ======================================== n p(n) |e(n)| ========================================-2.00000000000000 0.91222917848440 1-3.00000000000000 0.08777082151560 2-2.83333333333333 0.07889584515106 3-2.90792838874680 0.00430078973759 4-2.91244964042237 0.00022046193798 5-2.91222858559119 0.00000059289320 6-2.91222917840283 0.00000000008157 7-2.91222917848440 0.00000000000000 ======================================== It takes five iterations and six function evaluations to obtain p 6 , which has an error of- 8 . 16 10- 11 . In this case, Secant is comparable with Newton. 1 2 (2) (Finding Multiple Roots) (a) Bradie, p. 105, #11 =============================================================================== n p(n) |e(n)| ln e(n)/ln e(n-1) e(n)/e(n-1) =============================================================================== 0.33333333333333 1 0.11290322580645 0.22043010752688 1.37644064480852 0.66129032258065 2 0.18714686945667 0.14618646387666 1.27159410916128 0.66318737270876 3 0.23620832719698 0.09712500613635 1.21264234763671 0.66439124089009 4 0.26872882688378 0.06460450644956 1.17485304339133 0.66516862154799 5 0.29032765253196 0.04300568080137 1.14855128324725 0.66567617593288 6 0.30469112286118 0.02864221047215 1.12917865475386 0.66600993027961 7 0.31425102136460 0.01908231196874 1.11430737959058 0.66623042196037 8 0.32061732842082 0.01271600491251 1.10252616151281 0.66637653410887 9 0.32485845235361 0.00847488097972 1.09295869129396 0.66647355344927 10 0.32768450259607 0.00564883073726 1.08503204972648 0.66653806121626 =============================================================================== The apparent order of convergence is linear with asymptotic rate constant 0 . 666. The Bisection method converges faster. (Why?) (b) Bradie, p. 125, #14 (i) The Secant Method appears to be converging with order 1 . 6. The lack of accuracy reflects the fact that the root has higher multiplicity. ============================================================= n p(n) e(n) ln e(n)/ln e(n-1) ============================================================= 0.50000000000000 0.50000000000000 1 2.00000000000000 1.00000000000000 2 0.85907511736897 0.14092488263103 3 0.97121826967156 0.02878173032844 1.81064723424204 4 1.00157397663295 0.00157397663295 1.81908784573958 5 0.999984548159260....
View Full Document

Page1 / 7

hw3_solutions - Homework 3, Solution Sketches Math 471,...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online