arclength_surfarea

arclength_surfarea - (9.1 Arc Length An interesting...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (9.1) Arc Length An interesting geometric application of integration is the problem of finding the length of a curve. We imagine a curve (given by the graph of a function) as a fine wire, which we cut out and carefully straighten, and whose length we can measure. We call that length arc length. The recipe is as follows: Suppose the curve is y = f ( x ), for a ≤ x ≤ b . Then its arc length is L = b a 1 + [ f ( x )] 2 dx = b a 1 + dy dx 2 dx. Why does this formula work? Imagine a tiny piece of curve at x , of horizontal width dx . Call the length of that tiny piece of curve ds . (This is the differential of arc length.) Since the piece of curve is small, we pretend it is a little line segment. It forms the hypotenuse of a little right triangle, with base dx and the vertical leg dy . (Here, dy dx is the slope of the curve at that point.) The theorem of Pythagorus says ds 2 = dx 2 + dy 2 . So the length of that little piece of curve is ds = dx 2 + dy 2 = 1 + dy 2 dx 2 dx 2 = 1 + dy dx 2...
View Full Document

{[ snackBarMessage ]}

Page1 / 3

arclength_surfarea - (9.1 Arc Length An interesting...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online