911 - Please try the following problems: What is wrong with...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Please try the following problems: What is wrong with the following n,  l  quantum number  combinations? n = 3,  l  = 3 n = 2,  l  = -1 n = 0,  l  = 2 Order the following subshells in increasing energy. 5s 3d 4p l < n l > 0 n > 0 n +l : 5 + 0 = 5 n +l : 3 + 2 = 5 n +l : 4 + 1 = 5 n +l is equal for all so use n →↑ E 5s > 4p > 3d
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
n=4 n=3 n=2 # nodes = n - 1  node  node  node  node  node  node n=1 (2) (1) (0) (3) The more nodes, the higher the energy!  Section 2.4 Waves and Nodes # λ  = n/2
Background image of page 2
n=3 L = (# λ ) λ L = (n/2) λ λ = 2L/n = 2 / 3 L L λ Waves and Nodes Section 2.4 # λ  = n/2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Or, use the periodic table: Tricks for Filling Orbitals Section 2.5 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 1s 2s 2p 3s 3p 4s  3 d 4p 5s  4 d 5p 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s ... Write out  this funny  chart: Increasing energy!
Background image of page 4
Each orbital in a sublevel has the same energy Quantum Numbers- m l Section 2.6 For  l  = 1 (p subshell), m l  = –1, 0, or 1 There are actually 3 different p subshells x y z p x p y p z
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p m l -2          -1          0          1             2 sublevels Orbitals of the Atom (p. 46) Section 2.6 each s has one orbital each p has three orbitals each d has five orbitals Use the tricks to get the order of the sublevels
Background image of page 6
Quantum Numbers- m s   (last one!) Section 2.5 Any orbital can hold a  maximum  of  two   electrons , one + 1 / 2  and one – 1 / 2 1 s 2 s 2 p m l  -1         0           1  sublevels
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Pauli Exclusion Principle Section 2.7 Each electron in an atom can be described by a distinct  set of four quantum numbers! 1 s 2 s 2 p m l  -1          0          1  sublevels n=2,  l =1, m l =1,  s= + 1 / 2 Pauli Exclusion Principle - no two electrons  can have the same set of four quantum  numbers.  n=1,  l =0, 
Background image of page 8
Section 2.5 Quantum Numbers n  - how far away from the nucleus, which “shell” n  = 1, 2, 3,… l   - the shape of the subshell (also equals the # nodes) l   = 0, 1, 2, …, n-1 m s  - which electron in the orbital of the subshell m s  = -1/2 or +1/2 l  = 0 “s” subshell l  = 1 “p” subshell = 2 “d” subshell l  = 3 “f” subshell
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 06/14/2009 for the course CH 101 taught by Professor Bigham during the Spring '08 term at N.C. State.

Page1 / 30

911 - Please try the following problems: What is wrong with...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online