{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 911 - Please try the following problems What is wrong with...

This preview shows pages 1–11. Sign up to view the full content.

Please try the following problems: What is wrong with the following n,  l  quantum number  combinations? n = 3,  l  = 3 n = 2,  l  = -1 n = 0,  l  = 2 Order the following subshells in increasing energy. 5s 3d 4p l < n l > 0 n > 0 n +l : 5 + 0 = 5 n +l : 3 + 2 = 5 n +l : 4 + 1 = 5 n +l is equal for all so use n →↑ E 5s > 4p > 3d

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
n=4 n=3 n=2 # nodes = n - 1  node  node  node  node  node  node n=1 (2) (1) (0) (3) The more nodes, the higher the energy!  Section 2.4 Waves and Nodes # λ  = n/2
n=3 L = (# λ ) λ L = (n/2) λ λ = 2L/n = 2 / 3 L L λ Waves and Nodes Section 2.4 # λ  = n/2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Or, use the periodic table: Tricks for Filling Orbitals Section 2.5 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 1s 2s 2p 3s 3p 4s  3 d 4p 5s  4 d 5p 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s ... Write out  this funny  chart: Increasing energy!
Each orbital in a sublevel has the same energy Quantum Numbers- m l Section 2.6 For  l  = 1 (p subshell), m l  = –1, 0, or 1 There are actually 3 different p subshells x y z p x p y p z

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p m l -2          -1          0          1             2 sublevels Orbitals of the Atom (p. 46) Section 2.6 each s has one orbital each p has three orbitals each d has five orbitals Use the tricks to get the order of the sublevels
Quantum Numbers- m s   (last one!) Section 2.5 Any orbital can hold a  maximum  of  two   electrons , one + 1 / 2  and one – 1 / 2 1 s 2 s 2 p m l  -1         0           1  sublevels

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Pauli Exclusion Principle Section 2.7 Each electron in an atom can be described by a distinct  set of four quantum numbers! 1 s 2 s 2 p m l  -1          0          1  sublevels n=2,  l =1, m l =1,  s= + 1 / 2 Pauli Exclusion Principle - no two electrons  can have the same set of four quantum  numbers.  n=1,  l =0,
Section 2.5 Quantum Numbers n  - how far away from the nucleus, which “shell” n  = 1, 2, 3,… l   - the shape of the subshell (also equals the # nodes) l   = 0, 1, 2, …, n-1 m s  - which electron in the orbital of the subshell m s  = -1/2 or +1/2 l  = 0 “s” subshell l  = 1 “p” subshell = 2 “d” subshell l  = 3 “f” subshell

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Electron Configurations Section 2.7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}