For adiabatic systems chemical equilibrium is

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: For adiabatic systems, chemical equilibrium is established when the entropy of the reacting system reaches a maximum. Most reacting systems encountered in practice are not adiabatic, however. Therefore, we need to develop an equilibrium criterion applicable to any reacting system. In this chapter, we develop a general criterion for chemical equilibrium and apply it to reacting ideal-gas mixtures. We then extend the analysis to simultaneous reactions. Finally, we discuss phase equilibrium for nonreacting systems. I Objectives The objectives of Chapter 16 are to: Develop the equilibrium criterion for reacting systems based on the second law of thermodynamics. Develop a general criterion for chemical equilibrium applicable to any reacting system based on minimizing the Gibbs function for the system. Define and evaluate the chemical equilibrium constant. Apply the general criterion for chemical equilibrium analysis to reacting ideal-gas mixtures. Apply the general criterion for chemical equilibrium analysis to simultaneous reactions. Relate...
View Full Document

This note was uploaded on 06/15/2009 for the course MAE 3311 taught by Professor Hajisheik during the Summer '08 term at UT Arlington.

Ask a homework question - tutors are online