chapter1&2 (introduction & statics of particles)

# chapter1&2 (introduction & statics of particles) -...

This preview shows pages 1–11. Sign up to view the full content.

ENGINEERING STATICS CHAPTER 1 & 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Details of Lecturer Course Lecturer : Dr. E.I. Ekwue Room Number : 216 Main Block, Faculty of Engineering Email: [email protected] , Tel. No. : 662 2002 Extension 3171 Office Hours: 9 a.m. to 12 Noon. (Tue, Wed and Friday)
COURSE GOALS This course has two specific goals: (i) To introduce students to basic concepts of force, couples and moments in two and three dimensions. (ii) To develop analytical skills relevant to the areas mentioned in (i) above.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
COURSE OBJECTIVES Upon successful completion of this course, students should be able to: (i) Determine the resultant of coplanar and space force systems. (ii) Determine the centroid and center of mass of plane areas and volumes. (iii) Distinguish between concurrent, coplanar and space force systems (iv) Draw free body diagrams.
COURSE OBJECTIVES CONTD. (v) Analyze the reactions and pin forces induces in coplanar and space systems using equilibrium equations and free body diagrams. (vi) Determine friction forces and their influence upon the equilibrium of a system. (vii) Apply sound analytical techniques and logical procedures in the solution of engineering problems.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Course Content (i) Introduction, Forces in a plane, Forces in space (ii) Statics of Rigid bodies (iii) Equilibrium of Rigid bodies (2 and 3 dimensions) (iv) Centroids and Centres of gravity (v) Moments of inertia of areas and masses (vi) Analysis of structures (Trusses, Frames and Machines) (vii) Forces in Beams (viii) Friction
Teaching Strategies The course will be taught via Lectures and Tutorial Sessions, the tutorial being designed to complement and enhance both the lectures and the students appreciation of the subject. Course work assignments will be reviewed with the students.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Course Textbook and Lecture Times Vector Mechanics For Engineers By F.P. Beer and E.R. Johnston (Third SI Metric Edition), McGraw-Hill. Lectures: Wednesday, 1.00 to 1.50 p.m. Thursday , 10.10 to 11.00 a.m. Tutorials: Monday, 1.00 to 4.00 p.m. [Once in Two Weeks] Attendance at Lectures and Tutorials is Compulsory
Tutorial Outline Chapter 2 – STATICS OF PARTICLES 2.39*, 41, 42*, 55, 85*, 86, 93*, 95, 99*, 104, 107*, 113 Chapter 3 – RIGID BODIES: EQUIVALENT SYSTEM OF FORCES 3.1*, 4, 7*, 21, 24*, 38, 37*, 47, 48*, 49, 70*, 71, 94*, 96, 148*, 155 Chapter 4 – EQUILIBRIUM OF RIGID BODIES 4.4*, 5, 9*, 12, 15*, 20, 21*, 31, 61*, 65, 67*, 93, 115* Chapters 5 and 9 – CENTROIDS AND CENTRES OF GRAVITY, MOMENTS OF INERTIA 5.1*, 5, 7*, 21, 41*, 42, 43*, 45, 75*, 77 9.1*, 2, 10*, 13, 31*, 43, 44* Chapter 6 – ANALYSIS OF STRUCTURES 6.1*, 2, 6*, 9, 43*, 45, 75*, 87, 88*, 95, 122*, 152, 166*, 169 Chapters 7 and 8 – FORCES IN BEAMS AND FRICTION 7.30 , 35, 36, 81, 85 8.25, 21, 65 * For Chapters 1 to 6 and 9, two groups will do the problems in asterisks; the other two groups will do the other ones. All the groups will solve all the questions in Chapters 7 and 8.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Time-Table For Tutorials/Labs         MONDAY 1:00 - 4:00 P.M.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern