{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

s133x38

# s133x38 - %Limit as X> positive infinity x=[1 10 100 1000...

This preview shows page 1. Sign up to view the full content.

% % Stewart 133/38 % %Find the horizontal and vertical asymptotes of each curve. Check your %work by graphing the curve and estimating the asymptotes % %There are no vertical asymptotes as per the instructions % %I will take the limit of the function as x approches positive and negitive %infinity to find the horizontal asymptotes. % %-------------------------------------------------------------------------- % %Limit as X-> negitive infinity % x= [-1, -10, -100, -1000, -1.0e6, -1.0e9, -1.0e12, -1.0e15]; % format long fx=(x-9)./(sqrt(4.*x.^2+3.*x+2)) fx = Columns 1 through 6 -5.773502691896258 -0.985104109993904 -0.547041539208741 -0.504689167717547 - 0.500004687501668 -0.500000004687500 Columns 7 through 8 -0.500000000004687 -0.500000000000005 % %the lower limit and lower asymptote is -0.500000000000005
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: %--------------------------------------------------------------------------% %Limit as X-> positive infinity % x= [1, 10, 100, 1000, 1.0e6, 1.0e9, 1.0e12, 1.0e15]; % format long fx=(x-9)./(sqrt(4.*x.^2+3.*x+2)) fx = Columns 1 through 6-2.666666666666667 0.048112522432469 0.453292040260017 0.495314168218525 0.499995312501668 0.499999995312500 Columns 7 through 8 0.499999999995313 0.499999999999995 % % %the upper limit and upper asymptote is -0.499999999999995 % x= linspace(-50,50); fx=(x-9)./(sqrt(4.*x.^2+3.*x+2)); plot(x,fx) xlabel('x') ylabel('y') title('Stewart 133/38') axis([-50 50 -20 2]) hold on grid on %plot (0,0.499600361081320,'o') echo off; diary off...
View Full Document

{[ snackBarMessage ]}