s090x13 - % x= [-1, -0.5, -.4, -.3, -.2, -.1, -.05, -.01];...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
delete s090x13.txt; diary s090x13.txt clear all; clc; close all; echo on % % Stewart 90/13 % %Evaluate the function (fx=(1-cosd(x))./(x.^2)) at the the given numbers %(correct to 6 decimel places). Use the results to guess the value of the %limit, or state that it does not exsit. % %Evaluate:----------------------------------------------------------------- % x= [1, 0.5, .4, .3, .2, .1, .05, .01]; % format long fx=(1-cos(x))./(x.^2) f % % The limit would be .499600361081320 % %-------------------------------------------------------------------------- % %Limit as X->0 from the left
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: % x= [-1, -0.5, -.4, -.3, -.2, -.1, -.05, -.01]; % format long fx=(1-cos(x))./(x.^2) f % %the limit would be .499600361081320 %--------------------------------------------------------------------------% %Limit as X->0 from the right % x= [1, 0.5, .4, .3, .2, .1, .05, .01]; % format long fx=(1-cos(x))./(x.^2) f % % %the limit would be .499600361081320 % x= linspace(-8,8); fx=(1-cos(x))./(x.^2); plot(x,fx) xlabel('x') ylabel('y') title('Stewart 90/13') axis([-2*pi 2*pi 0 1]) hold on plot (0,0.499600361081320,'o') p echo off; diary off...
View Full Document

This note was uploaded on 06/18/2009 for the course MATH 151 taught by Professor Artbelmonte during the Spring '06 term at Texas A&M.

Ask a homework question - tutors are online