# hw2s - P3.5 5 = 3.00} m/s2 ; 0,. = 5003 m/s ; j. = oi + 03...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P3.5 5 = 3.00} m/s2 ; 0,. = 5003 m/s ; j. = oi + 03 A 1 A. (a) =i‘i+V,-t+%§t2 = [5.00ti+-2—3.00t2]]m \1 vf =v,. +§t = (5,003+30013) m/s (b) t = 2.00 s, :3 = 5.00(2.00)i + l(3.00)(2.00)23 = (10.03 + 6.003) m 2 6f = 5.00i + 3.00(2.00)i = (500\$ + 6003) m/s vf =|vf|=,/vf,f +v§f =‘/(5.00)2 +(6.00)2 = P3.10 From Equation 3.16 with R = 15.0 m, vi = 3.00 m/s, Bmax = 45.0° P3.11 Take the origin at the mouth of the cannon. xf =vxit 2000 m=(1000 m/s)cos€,~t Therefore, t= 2'00 5 cos 0i 1 . 1 y}: =vyit+—2—ayt2: 800 m=(1000 m/s)sm0it+E(—9.80 m/s2)t2 800 m=(1000 m/s)sin0,~[2'00 SJ—aaso m/sz)[ 2'00 5] cos 0i cos 6,- 800 m(cos2 19,-) = 2 000 m(sin 6i cos (9,) — 19.6 m 19.6 m+ 800 m(cos2 19,-) = 2 000 m‘ll — cos2 0i (cos 0,) 334 + (31 360) cos.2 a,- + (640 000) cos4 0 = (4000 000) cos2 0,. — (4 000 000) cos4 0,. 4640 000 cos4 0,. —3968640cosz 01+ 384: 0 2 3968 640 i: "(3 968 640)2 — 4(4 640 000)(384) cos (9,. = 9280000 cos 0,- = 0.925 or 0.00984 9,- = 22.4° or 894° (Both solutions are valid.) P3.16 P327 P3.45 The horizontal component of displacement is x f = vxit = (vi cos 6,-)t. Therefore, the time required to (1 vi COS 0i . At this time, the altitude of the water is reach the building a distance d away is t = 2 _ 1 2_ . d _g d yf—int+Euyt —vism0,-[vicosei] 2[vicosai . Therefore the water strikes the building at a height h above ground level of 2 gd h: = dt 6i—————. yf an ngzcoszﬂi The satellite is in free fall. Its acceleration is due to gravity and is by effect a centripetal acceleration. “C = 8 Dz 3 _ = - - _ _ I 2 _ 3 so r g. Solv1ng for the velocrty, v — ﬁg — (6,400+ 600)(10 m)(8.21 m/s ) — 7.58 X 10 m/s . v = 2—7” and T 2,” 27r(7,000 x 103 m) T=—=—= 5.80x103 0 7.58x103 m/s T = 5.80 x103 5(1 mm) = 96.7 min. 60 5 Refer to the sketch: (b) A x = vxl-t ; substitution yields 130 = (0,- cos 35.0°)t. A y = vyit + —12—at2; substitution yields 20.0 = (2;,- sin 35.0°)t + %(—9.80)t2. . . 2 _ 130tan35°—20 _ Solv1ng gives t — ————4.9 :> t — . (a) v,- = ITI/S (c) vyf = v,- sint9l- —gt, vx = vi c050,- At t=3.81 s, vyf = 41.7 sin35.0°—(9.80)(3.81)= —13.4 m/s vx = (41.7 cos 350°) = FIG. P3.45 P3.47 x f = vixt = vit cos 40.0° Thus, when xf =10.0 m, t=&. vi cos 40.0° At this time, yf should be 3.05 m— 2.00 m = 1.05 m. ' 2 ~ 400° 10.0 ThuS,1.05 m=w+1(_930 m/Sz) _m t 0,- cos 40.0° 2 01. cos 4000 From this, vi = . ...
View Full Document

## This note was uploaded on 04/02/2008 for the course PHYS 6A taught by Professor Mahaashour-abdalla during the Winter '07 term at UCLA.

### Page1 / 3

hw2s - P3.5 5 = 3.00} m/s2 ; 0,. = 5003 m/s ; j. = oi + 03...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online