MATHEMATICS
BOOK FOR 10+2
ENTRANCES
BOOKS FOR B.SC MATHEMATICS/STATISTICS
ENTRANCE EXAMS:
1. Challenge & Thrill of Pre-College Mathematics
2. Mathematics Olympiad by Rajeev Manocha
3. An excursion in Mathematics by Modak
4. Mathematical Circles by Fomin
5. Play with Graphs by Arihant
6. Maths Wit Volume 1 & 2 by S.Chatterjee
7. Plane Trigonometry by SL Loney
8. Coordinate Geometry by SL Loney
9. Essential Calculus early transcendentals by James Stewart
10. Test of Mathematics at 10+2 level by East-West Press

ALGEBRA
2
Arithmetic series
General (
k
th) term,
u
k
=
a
+ (
k
– 1)
d
last (
n
th) term,
l
=
u
n
=
a
+ (
n
– l)
d
Sum to
n
terms,
S
n
=
n
(
a
+
l
) =
n
[2
a
+ (
n
– 1)
d
]
Geometric series
General (
k
th) term,
u
k
=
a r
k
–1
Sum to
n
terms,
S
n
=
=
Sum to infinity
S
∞
=
, – 1 <
r
< 1
Binomial expansions
When
n
is a positive integer
(
a
+
b
)
n
=
a
n
+
(
)
a
n
–1
b
+
(
)
a
n
–2
b
2
+ ... +
(
)
a
n–r
b
r
+ ...
b
n
,
n
∈
H11934
where
(
)
=
n
C
r
=
(
)
+
(
)
=
(
)
General case
(1 +
x
)
n
= 1 +
nx
+
x
2
+ ... +
x
r
+ ... , |
x
| < 1,
n
∈
H11938
Logarithms and exponentials
e
x
ln
a
=
a
x
log
a
x
=
Numerical solution of equations
Newton-Raphson iterative formula for solving
f(
x
) = 0,
x
n
+1
=
x
n
–
Complex Numbers
{
r
(cos
θ
+ j sin
θ
)}
n
=
r
n
(cos
n
θ
+ j sin
n
θ
)
e
j
θ
= cos
θ
+ j sin
θ
The roots of
z
n
= 1 are given by
z
= exp(
j) for
k
= 0, 1, 2, ...,
n
–1
Finite series
∑
n
r
=1
r
2
=
n
(
n
+ 1)(2
n
+ 1)
∑
n
r
=1
r
3
=
n
2
(
n
+ 1)
2
1
–
4
1
–
6
2
π
k
––––
n
f(
x
n
)
––––
f'(
x
n
)
log
b
x
–––––
log
b
a
n
(
n
– 1) ... (
n
–
r
+ 1)
–––––––––––––––––
1.2 ...
r
n
(
n
– 1)
–––––––
2!
n
+ 1
r
+ 1
n
r
+ 1
n
r
n
!
––––––––
r
!(
n
–
r
)!
n
r
n
r
n
2
n
1
a
–––––
1 –
r
a
(
r
n
– 1)
––––––––
r
– 1
a
(1 –
r
n
)
––––––––
1 –
r
1
–
2
1
–
2
Infinite series
f(
x
)
= f(0) +
x
f'(0) +
f"(0) + ... +
f
(
r
)
(0) + ...
f(
x
)
= f(
a
) + (
x
–
a
)f'(
a
) +
f"(
a
) + ... +
+ ...
f(
a
+
x
)
= f(
a
) +
x
f'(
a
) +
f"(
a
) + ... +
f
(
r
)
(
a
) + ...
e
x
= exp(
x
)
= 1 +
x
+
+ ... +
+ ... , all
x
ln(1 +
x
)
=
x
–
+
– ... + (–1)
r
+1
+ ... , – 1 <
x
H11088
1
sin
x
=
x
–
+
– ... + (–1)
r
+ ... , all
x
cos
x
= 1 –
+
– ... + (–1)
r
+ ... , all
x
arctan
x
=
x
–
+
– ... + (–1)
r
+ ... , – 1
H11088
x
H11088
1
sinh
x
=
x
+
+
+ ... +
+ ... , all
x
cosh
x
= 1 +
+
+ ... +
+ ... , all
x
artanh
x
=
x
+
+
+ ... +
+ ... , – 1 <
x
< 1
Hyperbolic functions
cosh
2
x
– sinh
2
x
= 1,
sinh2
x
= 2sinh
x
cosh
x
,
cosh2
x
= cosh
2
x
+ sinh
2
x
arsinh
x
=
ln(
x
+
),
arcosh
x
=
ln(
x
+
),
x
H11091
1
artanh
x
=
ln
(
)
, |
x
| < 1
Matrices
Anticlockwise rotation through angle
θ
, centre O:
(
)
Reflection in the line
y
=
x
tan
θ
:
(
)
cos 2
θ
sin 2
θ
sin 2
θ
–cos 2
θ
cos
θ
–sin
θ
sin
θ
cos
θ
1 +
x
–––––
1 –
x
1
–
2
x
2
1
–
x
2
1
+
x
2
r
+1
––––––––
(2
r
+ 1)
x
5
––
5
x
3
––
3
x
2
r
––––
(2
r
)!
x
4
––
4!
x
2
––
2!
x
2
r
+1
––––––––
(2
r
+ 1)!
x
5
––
5!
x
3
––
3!
x
2
r
+1
––––––
2
r
+ 1
x
5
––
5
x
3
––
3
x
2
r
––––
(2
r
)!
x
4
––
4!
x
2
––
2!
x
2
r
+1
––––––––
(2
r
+ 1)!
x
5
––
5!
x
3
––
3!
x
r
––
r
x
3
––
3
x
2
––
2
x
r
––
r
!


You've reached the end of your free preview.
Want to read all 297 pages?
- Fall '15
- Mathematics for Economics