{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

41e1fa07

# 41e1fa07 - MATH 041 EXAM I FORM A FALL 2007 1 Solve the...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 041 EXAM I, FORM A FALL 2007 1. Solve the equation x 2 = l . 7. Solve the absolute value inequality 7 i |233 * 1| 2 0, a) a: = 4 a) [—3. 4i b) = —4. b) [—00, c) :r = —16 C) {—00, —3] U d) x = 10 d) [700, *3] U [4, oo] 2 What quantity of a 60% a/eid soiution must be mixed with a 30% 8' Find the midpmnt Of the sagmcnt juining the pomts {5‘ ha) and Solution to produce 300 niL of a 50% solution? (129)- a) 50 mL a) (2.5, 8.5) b) 100 mL h) (2.5, 0.5) P) 150 mL C) (8.5, —0.5} d} 200 mL G) (8-5, 0.5) . , - = 2 _ ,. - . 3. Find all values of k: so that the equation 9:52 + km. : #4 has exactly 9' T85" me (quatlon y m I'L‘ for symmetry one real solution. a) The graph is symmetric with respect to the y-axis. b) The graph is symmetric with respect to the xuaxis. c) The graph is symmetric with respect to the origin. d} There is no symmetry. 10. Find the center and radius of the circle with the equation (c2 + y"a + 5 8a: — 4y 2 1. 4. Find all complex solutions of the equation to + 4 + i = 0. 'w a.) center (—4,?)1 radius v21 a) w:—2+2i.w=—2—2i b) center (—8. 2}1 radius 21 b) w : —2+i\/§,m = —2—i\/§ c) center (—81 2), radius m c)w:4+1§\/§,w=4—i\/§ d) center {4, —-2). radius 21 Ci) w=l+'i.w='| 71‘} 11. Determine the equation for the line passing through the point (i, 5. Find all real solutions of the equation LE — TJE+ if} = 0. 4} which is parallel to tho lino passing through both of the points (—1.-2) and (—3,12). e 9:2,. =' L) r r a rL) 1 +27 ‘ ?=~ — b] 1!:—2.1'=—5 J 7x 7 C) x:4,:i::25 h) y=77w+11 ‘1 ‘29 d 11".:—-4,5L'=—25 C 1:..-x _ i ) J 7 + 7 d) y=7m+ll (i. Solve the inoquahty > 3:13. :1‘+1 d a) (—oo.—1)u(7§.o) b) (—oo.—1)U(~l,0) e) (—1,oo) (l) (0,00) MATH 041 EXAM I, FORM A FALL 2007 12- It is given that 1” Varies .iUint‘b’ '35 I and 14- 1f 50 Z 3a y = 7, L113“ 17. State how the graph of the function y = x2+4x+2 can be obtained M = 14. Find the constant of proportionality. from the graph of ﬁx) = m2 + 433, a) k = :1 a.) The graph of is reﬂected about the. x—axis. 1 b} The graph of is reﬂected about the y-axis. b) k = — 6 c) The graph of is translated 2 units to the right and 1 2 unit down. c) k 2 d) The graph of f(:1:) is moved up 2 units. 3 d L‘. = 4 ) 4 18. Find the maximum or minimum value (whichever is appropriate) for “a _+_ h) _ fat) the function I3- Find the difference qum-k‘m f: h # 0: for = y = 9:2 —8:c+1. State whether the value is a. maximum or minimum. .1;2 + 1. a.) 15: maximum 1 b) 4: maximum 2 . b) h. + .2 c) 4: minimum h —15: ' ' 2M1 + ’12 + 1 (1) minimum c) W h d) 2a + h 19. Let f(:L') 2 5.1: + 1 and g(m) = —‘2;v: — 5. Find (9 o f)(.'r:). T2 1 a} —10x+24 14. Determine the domain of the function Mm) = b) ‘10:}: i 7 ’ —10 7 24 a) (—00. a) “i w 1 710 — 4 b) (—00, —6) t ) w c) (ﬁoo. 6] 20. Find the linear function if the graph of its inverse Function passes d) (*6, 00) through the. points (—1. 10) and (0, 15). 15. The graph of g is given below. Find 9(72) and the domain and 1 range of g. a) : 337 — 3 b ., z” 73 a} g(—2) undeﬁned. domain: [71,3], range: {—3.2} } ﬂ?) on: c) : 5:11 + 15 1 c) g(—2) = —1. domain: (—3, —2) LJ (*2, 2), range: [—1, 2) ‘31) ms) 2 ‘53 — 5 b) g(—2) = —1. doiriain: (~3, 2], range: [—1.2] d} g(—2) undeﬁned, domain: (73.2), range: (—1.2) 161 Compute the average rate of Change of the function ﬁns) : m i 1 on [—4. —2]. a) 1/3 b) 2/3 c) 71/3 d) —2/3 M41A.key '_| O WUWWOUZIOD’O WWUUOEIJWUOUJD‘J Page 1 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

41e1fa07 - MATH 041 EXAM I FORM A FALL 2007 1 Solve the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online